

lssue 2 2019

WISCONSIN EPI EXPRESS

IN THIS ISSUE

- Extended Influenza Season in Wisconsin, 2018–2019, page 2
- Ongoing Measles Surveillance in Wisconsin, page 3–4
- Follow-Up for Reportable Enteric Pathogens Found in Less Common Specimen Types, page 5
- Communicable Disease Case Counts, pages 6–7

PROGRAM UPDATES

STAFF UPDATES:

The Bureau of Communicable Diseases (BCD) welcomes the following staff to their new positions:

Ezra Menon, HIV Surveillance Coordinator, <u>ezra.menon@dhs.wisconsin.gov</u> Mariana Pasturczak, Immunization Program Office Associate, <u>mariana.pasturczak@dhs.wisconsin.gov</u> Vipul Shukla, HIV Partner Services Coordinator, <u>vipul.shukla@dhs.wisconsin.gov</u>

Retirements:

Jim Vergeront, HIV Program Director, retired on April 26, 2019. Please call the BCD main line, 608-267-9003, for any questions.

NEW AND REVISED WEBPAGES:

BCD is revamping communicable disease webpages so that they are easier to navigate and utilize plain language.

New webpages on the topics of <u>adenovirus</u>, <u>fungal illnesses</u>, <u>healthy swimming</u>, and <u>waterborne illnesses</u> have been created. Please see the revised webpages on the following topics: <u>acanthamoeba keratitis</u>, <u>free-living</u> <u>amebas</u>, <u>hantavirus</u>, <u>healthcare associated infections (HAIs</u>), <u>hepatitis A</u>, <u>legionellosis</u>, <u>Lyme disease</u>, <u>mosquito bite</u> <u>prevention</u>, <u>tickborne diseases</u>, <u>tick bite prevention</u>, <u>tularemia</u>, <u>typhus fever</u>, and <u>West Nile virus</u>.

ONGOING OUTBREAK INVESTIGATIONS:

See the Department of Health Services' <u>Outbreaks and Investigations webpage</u> for up-to-date information on outbreaks and investigations with wide impact in Wisconsin.

NEW EDUCATIONAL MATERIALS:

Check out our new animated video on <u>staying healthy around animals while at a fair or petting zoo</u> and the CDC video on <u>backyard poultry</u>. A new educational fact sheet is available on the topics of <u>hepatitis A</u>.

1 of 7

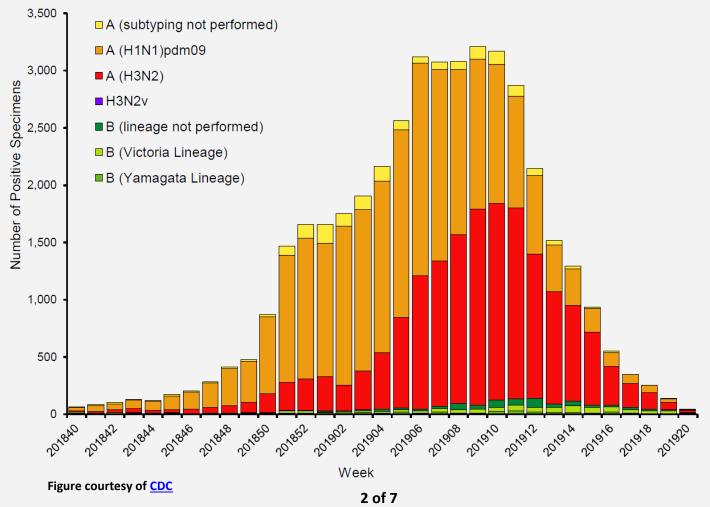
WISCONSIN DEPARTMENT OF HEALTH SERVICES | DIVISION OF PUBLIC HEALTH | BUREAU OF COMMUNICABLE DISEASES

Extended Influenza Season in Wisconsin, 2018-2019

By: Tom Haupt, Influenza Surveillance Coordinator

WHEN DID PEAK SEASON OCCUR?

Influenza activity in Wisconsin officially peaked during the week ending March 23, 2019 (week 2019–12). This has been one of the longest influenza seasons and the latest date of peak activity in the last 15 years. Historically, in Wisconsin, influenza activity peaks around the first week of February.


WHY WAS THIS SEASON UNIQUE?

The 2018-2019 influenza season was unusual, with two waves of influenza activity that were associated with two distinct subtypes of influenza A viruses. The predominant influenza virus for the initial wave of the season, A/H1N1, affected younger adults. The second wave of influenza activity was associated with the A/H3N2 virus, a virus that causes increased morbidity and mortality among the older population. In most seasons, influenza A activity is followed by a second wave of influenza B.

2018-2019 SEASON SUMMARY

As of June 10, 2019, 3,464 people have been hospitalized due to influenza and 128 people have died. Most of the hospitalizations and deaths occurred during the period when the A/H3N2 influenza virus was predominant in Wisconsin. For additional data on the 2018-2019 influenza season, please see the <u>Wisconsin Weekly Respiratory Report</u>.

Influenza Positive Tests Reported to CDC by U.S. Public Health Laboratories, National Summary, 2018-2019 Season

Ongoing Measles Surveillance in Wisconsin

By: Stacey Moyer, Field Unit Supervisor; and Sarah Born, Epidemiologist

MEASLES OVERVIEW

Measles is an acute viral respiratory infection characterized by a febrile prodrome and accompanied by cough, coryza, and conjunctivitis. Koplic spots develop one to two days before the rash. The fever often peaks at 104–105°F at the time of rash onset. The rash typically begins at the hairline and spreads downward and outward. Other infectious and noninfectious etiologies that may cause fever and generalized rash include Kawasaki disease, rubella, Coxsackievirus, Zika virus, or drug reactions.

An atypical infection can occur in individuals who have partial immunity from immunization with inactivated measles vaccine (used between 1963 and 1967), individuals who have received postexposure immune globulin (IG), or young infants with some residual maternal immunity.

MEASLES CASES IN 2019

From January 1 to June 13, 2019, approximately 1,044 individual cases of measles have been confirmed in 28 states. This is the greatest number of cases reported in the U.S. since 1992 and since measles was declared eliminated in 2000. These numbers are expected to rise and are <u>updated weekly</u> by CDC.

Though there have not been any cases of measles in Wisconsin since 2014, the index of suspicion has been

There have been 239 individuals suspected of having measles reported to public health so far this year.

high among medical providers. There have been 239 individuals suspected of having measles reported to public health so far this year, which represents more than a 108% increase in reporting and testing from the same time period last year.

COMMUNICABLILITY

Persons with measles are usually considered infectious from four days before to four days after rash onset. The day of rash onset should be counted as day zero.

Measles spreads through the air when an infected person coughs or sneezes. It is so contagious that if one person has it, 9 out of 10 people around him or her will also become infected if they are not protected. Because the virus remains infectious in the environment for up to two hours after an infected person has left the location, transmission can occur in public places without any known person-to-person contact with an infected individual. See Figure 1 (on page 4) for additional details about the timeline of measles.

PREVENTION

Vaccination is highly protective; one dose of measles vaccine is about 93% effective and two doses is 97% effective.

By: Stacey Moyer and Sarah Born

FIGURE I. MEASLES TIMELINE

Expo	sure		Rash ((day :			Da	iy 5-6	KEY: Symptoms Incubation Infectiousness Lab Testing Disease Prevention/Control	Day	30
	Prodrome 2-4d (range 1-7d)		lliness, rash lasts at least 5-6d				ł			
	Infectious 4d before Incubation typically 14d (range 7-18d)		fectious 4d before r	rash onset to 4d af	ter					
			Throat and NP swab for PCR 0-3d ^a			Serum for	r IgM 3d or greater ^b			
	Immunize all without proof of immunity (≥12 months of age) ^c			Exclude case through 4d ^d						
Give IG within 6d of exposure ^e			Exclude sus	ceptibl	e contacts	s on 7d to 21d	l case			

Footnotes:

a. Preferred timing for collecting throat and np swab is 0-3 days after rash onset but no later than 10 days. Urine can also be collected for PCR.
b. IgM collected prior to day 3 may result in a false negative. Serum for IgG can be obtained ASAP after onset but is not helpful if a convalescent is not obtained 10-30 days after the initial.

c. Proof of immunity: DOB prior to 1/1/1957 (not for healthcare worker), serologic proof, 1-2 doses of MMR vaccine. Available data suggest that measles vaccine, if given within 72 hours of exposure to susceptible individuals, will provide protection or disease modification in some cases.

d. Count the day of rash onset as day zero. May return to normal activities on day 5.

e. Give IG only if the person is immunocompromised, pregnant without evidence of immunity, or MMR is contraindicated.

Figure adapted from Michigan Department of Health and Human Services

Follow-Up for Reportable Enteric Pathogens Found in Less Common Specimen Types By: Lynn Roberts, Enterics Epidemiologist

One of the most frequently asked questions of the Enteric Diseases Program by LHD staff is, "How do I follow up with a client diagnosed with a reportable enteric illness with a specimen source that was not stool?" While most patients with a reportable bacterial enteric illness are diagnosed via stool testing, it is not uncommon for enteric pathogens to be detected in other clinical specimens, such as blood, urine, or abscess fluids.

HELPFUL TIPS TO KEEP IN MIND

- Reportable bacterial enteric pathogens should not be thought of as incidental findings. For example, finding *Salmonella* in urine means the client was likely shedding *Salmonella* in their stool and that led to a urinary tract infection. As another example, the isolation of *Campylobacter* spp. from blood is unlikely to have been caused by contamination during venipuncture or sample handling.
- It doesn't matter if the specimen was urine, blood, abscess fluid, or anything else: if a reportable pathogen was discovered, the case requires investigation. Remember, these bacteria are not incidental findings. Often the patient had a diarrheal illness in the days or weeks prior to their diagnosis. Asymptomatic shedding of these organisms is also possible.

The goal of a routine enteric interview is not to figure out the source of the client's infection. Unless the client's illness is part of an outbreak, the cause of the client's illness is usually not identified. The goal of enteric disease interviews is to get the most accurate exposure information possible in order to strengthen the data used in public health detection, prevention, and response efforts.

FOLLOW-UP

Follow-up with these cases still involves using the routine enteric follow-up worksheet (completing sections appropriate for the pathogen), but an onset date may be difficult to determine. The onset date depends on whether the client reports having diarrhea prior to their diagnosis.

If the patient does report diarrheal symptoms:

- The onset date is the date they first had gastrointestinal symptoms
- Once the onset date is known, complete the interview as you normally would, using the pathogen's standard exposure period as your timeline for exposures.

If the patient does NOT report diarrheal symptoms:

- The onset date will be the first date that the client experienced symptoms related to their presenting complaint. If the patient had an abscess, onset might be when they first noticed a swelling or a growth. If the patient had a urinary tract infection, onset might be when they first experienced pain while urinating.
- The exposure section will be completed differently than usual. Rather than asking about exposures during the normal four-day or seven-day exposure period, ask if the client would have likely consumed certain foods or had other exposures in the prior 30 days. For example, "I'm going to ask about a list of food items. Please tell me if you likely would have eaten that food item in the 30 days before your UTI, abscess, etc."

*If you have any questions, contact the Enteric Epi of the Day: 5 of 7 608-267-7143 or email <u>dhsdphenterics@dhs.wisconsin.gov.</u> This report contains a selection of reportable conditions with inclusion based on public health significance and frequency of occurrence. The case counts reflect confirmed and probable cases, for all process statuses. These numbers are not final and are subject to change as confirmatory testing and case follow-up are completed.

*Quarterly case counts should not be considered final and are subject to change.

Disease	2018 Case Counts	2019 Case Counts					
	Total	Q1	Q2	Q3	Q4	2019 YTD	
Enteric/Gastrointestinal (also includes suspect case	es)						
Campylobacteriosis	1,705	301				301	
Cryptosporidiosis	862	111				111	
Cyclosporiasis	319	3				3	
E. coli, Shiga toxin-producing (STEC)	565	79				79	
Giardiasis	675	89				89	
Hemolytic uremic syndrome	8	0				0	
Listeriosis	20	3				3	
Salmonellosis	1,039	138				138	
Shigellosis	129	32				32	
Typhoid fever	5	1				1	
Vibriosis (non-cholera)	31	8				8	
Yersiniosis	84	17				17	
Invasive Bacteria							
Group A Streptococcal disease	265	64				64	
Group B Streptococcal disease	624	124				124	
Mycotic							
Blastomycosis	119	6				6	
Coccidioidomycosis	15	2				2	
Histoplasmosis	22	4				4	
Respiratory					-		
Please refer to the weekly respiratory virus sur-	Please refer to the weekly respiratory virus surveillance report:						
https://www.dhs.wisconsin.gov/library/p-023	346-2018-19.htm						
Influenza-associated hospitalizations	6,243	2,521				2,521	
Influenza, novel	0	0				0	
Legionellosis	331	34				34	
Tuberculosis	49	15				15	
Sexually Transmitted	,					1	
Chlamydia trachomatis	28,225	7,176				7,176	
Gonorrhea	7,925	1,910				1,910	
HIV	215	50				50	
Syphilis (all stages)	510	152				152	
Vaccine Preventable							
Diphtheria	0	0				0	
Haemophilus influenza, invasive disease	117	30				30	
Hepatitis B, acute (confirmed cases only)	117	4				4	
Hepatitis B, perinatal	0	4				4	

Communicable Disease Case Counts (cont.)

Disease	2018 Case Counts	2019 Case Counts					
	Total	Q1	Q2	Q3	Q4	2019 YTD	
Vaccine Preventable (continued)							
Measles (rubeola)	0	0				0	
Meningococcal disease	10	1				1	
Mumps	28	7				7	
Pertussis (whooping cough)	697	106				106	
Poliomyelitis	0	0				0	
Rubella	0	0				0	
Streptococcus pneumoniae, invasive disease	518	128				128	
Tetanus	2	0				0	
Varicella (chickenpox)	300	70				70	
Vectorborne							
Babesiosis	64	3				3	
Ehrlichiosis/Anaplasmosis	517	9				9	
Jamestown Canyon virus infection	22	0				0	
La Crosse virus infection	0	0				0	
Lyme disease	1,883	64				64	
Malaria ¹	16	3				3	
Powassan virus infection	3	0				0	
Rocky Mountain spotted fever	29	1				1	
West Nile virus infection	33	0				0	
Yellow fever ¹	0	0				0	
Zika virus infection ^{1, 2}	0	0				0	
Zoonotic							
Brucellosis	3	0				0	
Hantavirus infection	0	0				0	
Leptospirosis	8	1				1	
Psittacosis	0	1				1	
Q Fever (acute)	6	0				0	
Rabies (human)	0	0				0	
Toxoplasmosis	7	6				6	
Tularemia	1	0				0	
Other							
CP-CRE		8				8	
Hepatitis A	15	4				4	
Hepatitis C, acute	142	29				29	
Hepatitis E, acute	0	0				0	
Kawasaki disease	23	3				3	
Lymphocytic choriomeningitis virus infection	0	0				0	
Transmissible spongiform encephalopathy (human)	2	1				1	

¹ Denotes diseases where all cases in Wisconsin residents are travel-associated. No local transmission occurs.

² Due to enhanced surveillance, asymptomatic confirmed cases are included.