

ADAMS COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

ADAMS COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(HOME HAZARDS ADAMS COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 10.2

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

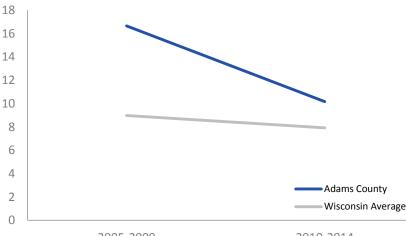
STATEWIDE: 7.9

• 3.4%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

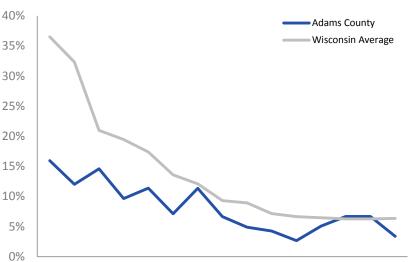
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

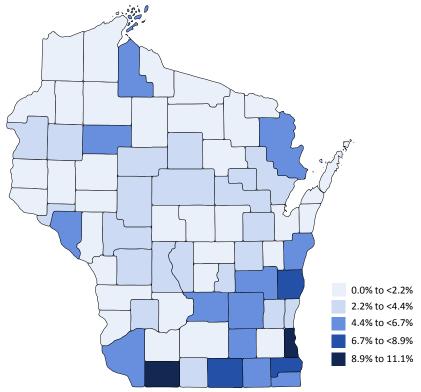
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

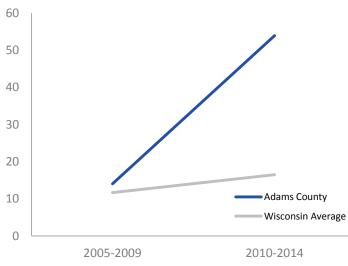
2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

B 53.9 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5


69.69.5 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

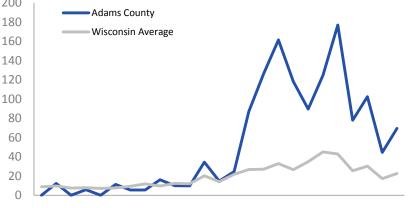
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infectedRAblack-legged tick (*Ixodes scapularis*) and is becoming200more common in Wisconsin. Lyme disease was the180fourth highest reported notifiable communicable160disease in 2015.140

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

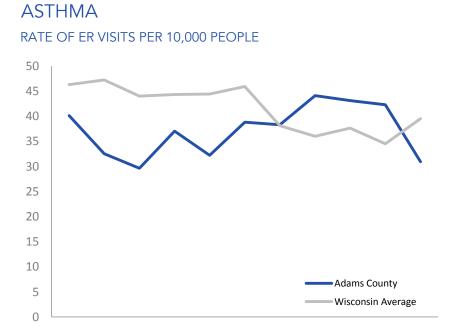
STATEWIDE: 39.5
STATEWIDE: 39.5

• 24.4

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 85.7

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • **18.2** HEART ATTACK RATE OF HOSPITALIZATION

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value At or below state value Suppressed

ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

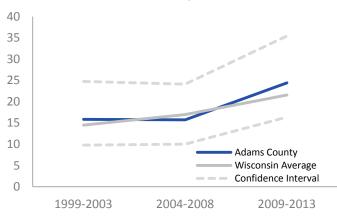
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

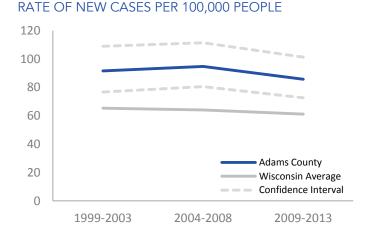
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 9

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

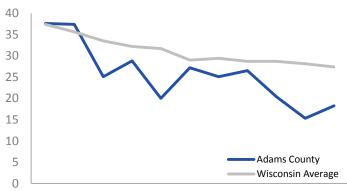

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE


HEART ATTACK

A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

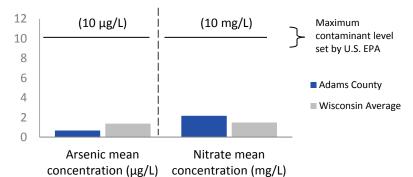
 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

2.2
 NITRATE

AVERAGE CONCENTRATION
IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) • 74.5% FLUORIDE PERCENT OF POPULATION WITH

FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY ADAMS COUNTY

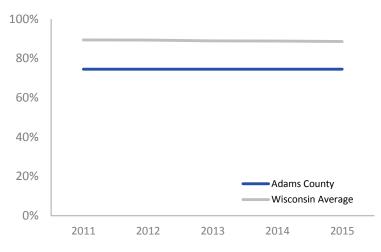
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

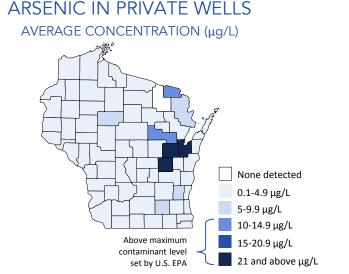

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

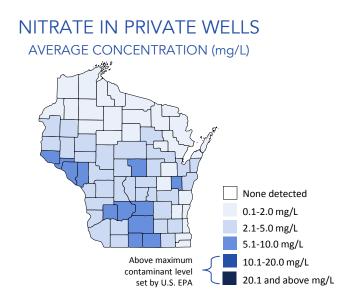
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER

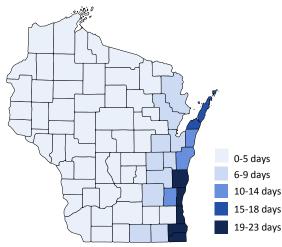



*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

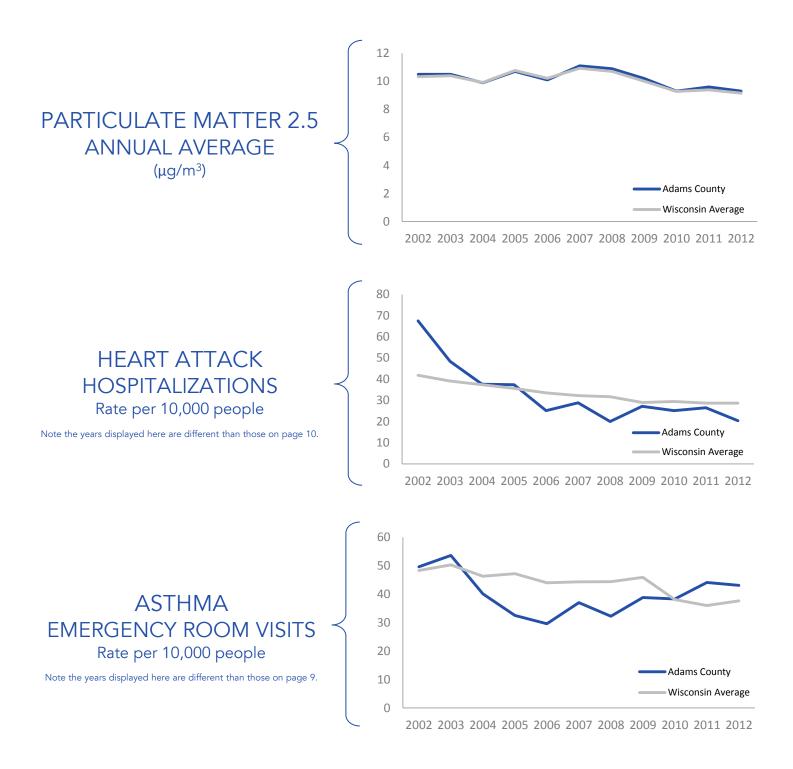
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **9.3 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

ASHLAND COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

ASHLAND COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

HOME HAZARDS ASHLAND COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

10.8

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

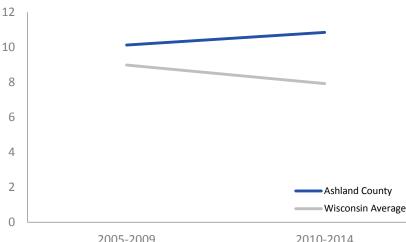
STATEWIDE: 7.9

4.8%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5 \mu g/dL$

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

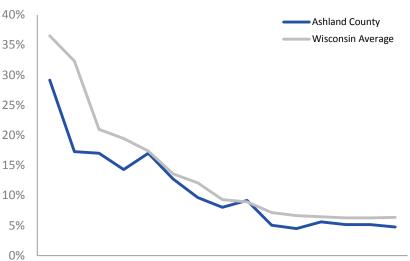
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

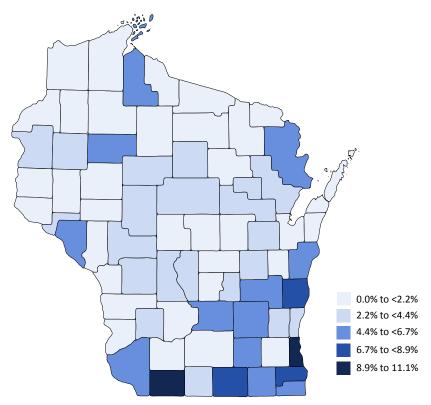
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD 25 µg/dL

2015 PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

29.7 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 113.6 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE

STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

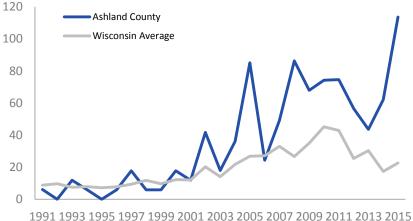
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

• 31.7

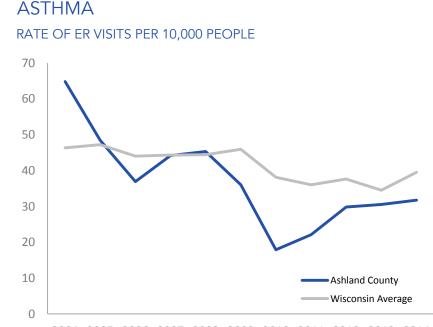
ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 13.1

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 71.4

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 50.0
 HEART ATTACK
 RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

STATEWIDE: 27.4


Above state value 📀 At or below state value ^ Suppressed

ASTHMA

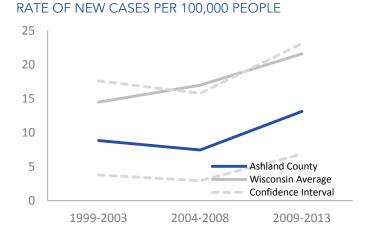
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

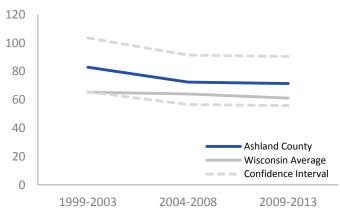
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

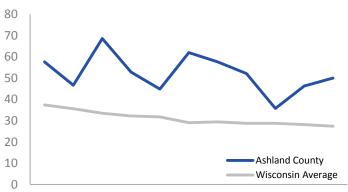
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred)

high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

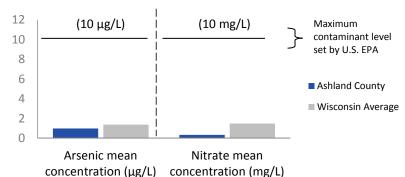
Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

89.7% NITRATE AVERAGE CONCENTRATION PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5

preferred)

At or below state value (with exception


of fluoride where above state value is

STATEWIDE: 88.6%

FLUORIDE

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. **Environmental Protection Agency.**

WATER QUALITY ASHLAND COUNTY

FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

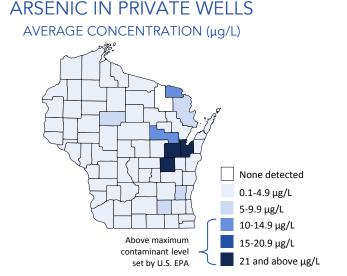

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

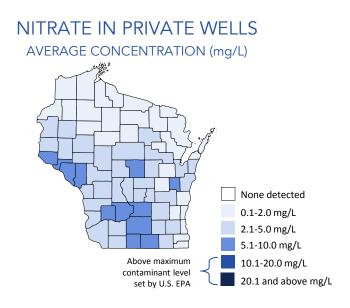
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER

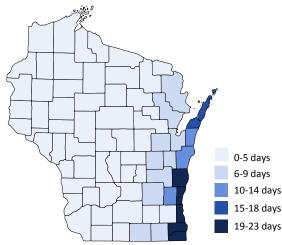



*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

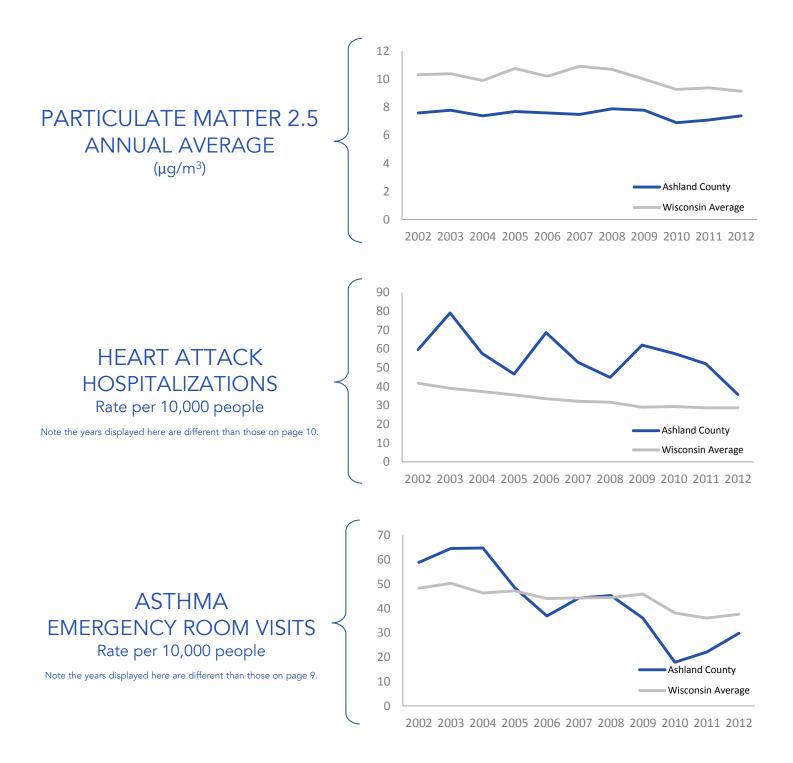
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 • 7.4 PARTICULATE MATTER 2.5 ANNUAL AVERAGE (µg/m³) STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

BARRON COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

BARRON COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS BARRON COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 8.2

CARBON MONOXIDE

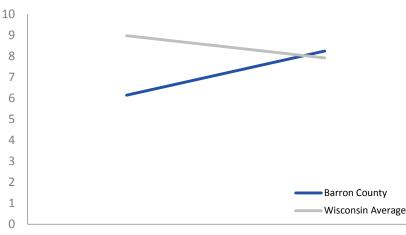
POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

• **2.4%**

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

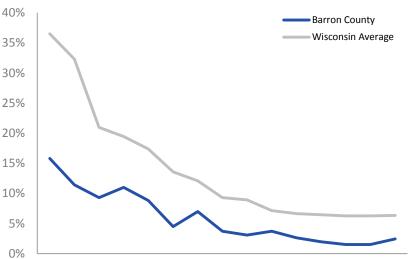
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

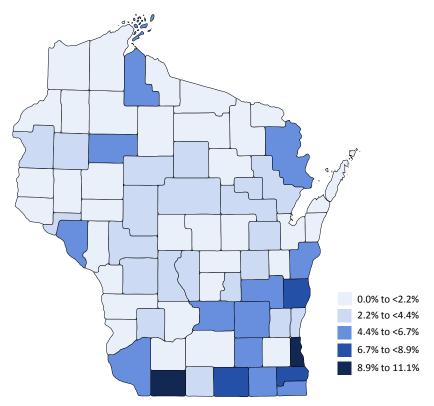
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING

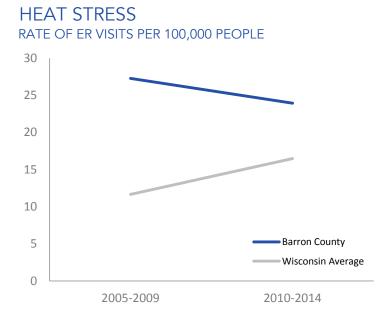
PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ${\geq}5~\mu\text{g/dL}$ 2015

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


Bate of ervisits per 100,000 people STATEWIDE: 16.5

I20.7 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

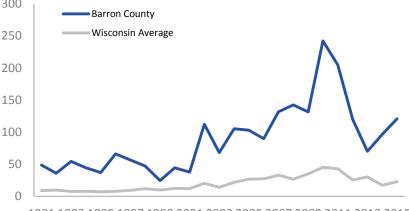
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming 300 more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

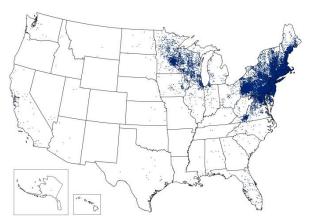
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

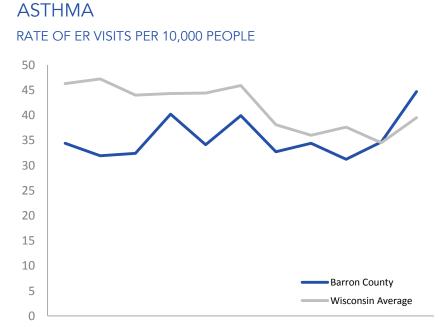
• 44.7 ASTHMA RATE OF ER VISITS

RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 18.0

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 58.9

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 31.9
 HEART ATTACK
 RATE OF HOSPITALIZATIO


RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

ASTHMA

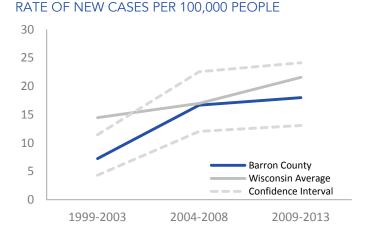
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

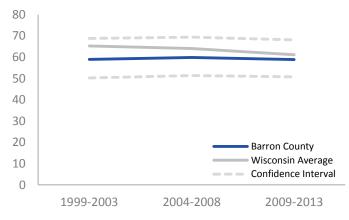
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

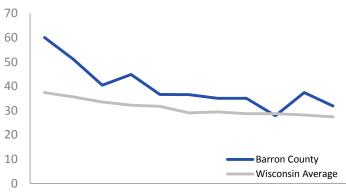
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC
> AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

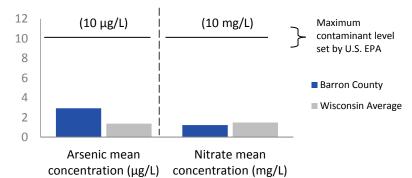
STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) • **40.5%** FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY BARRON COUNTY

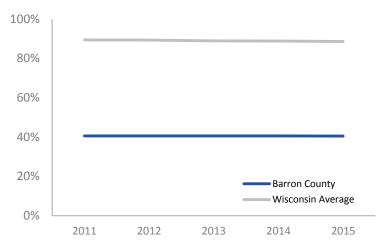
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

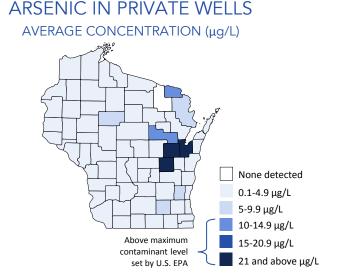

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

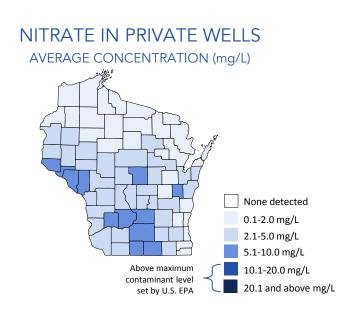
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

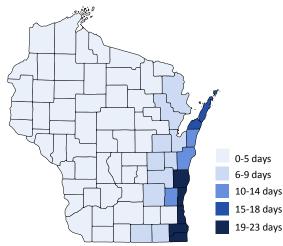
Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

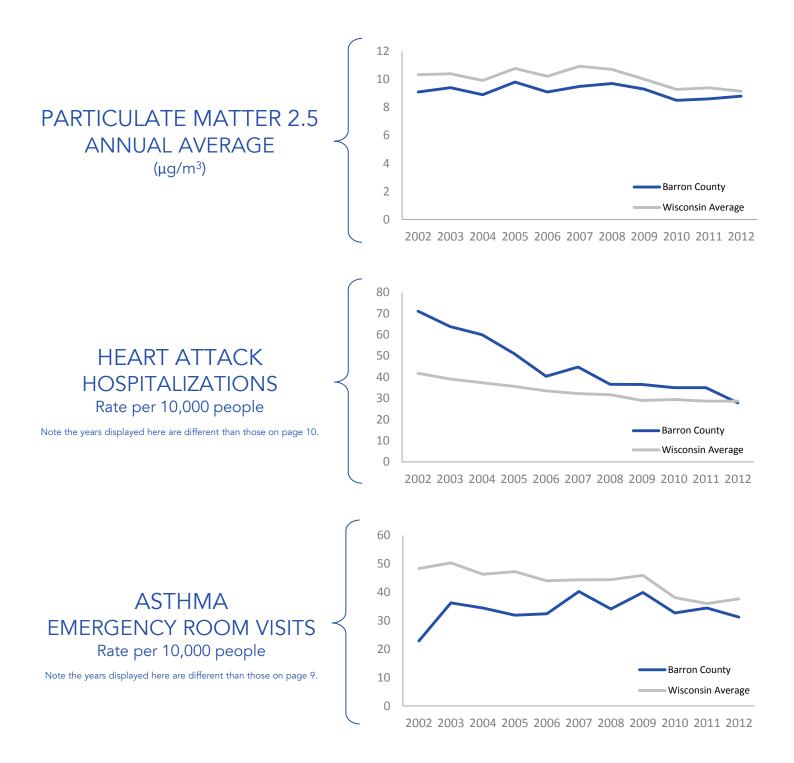
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **B.8 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

4 Above state value At or below state value Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

BAYFIELD COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

BAYFIELD COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health WISCONSIN

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(HOME HAZARDS BAYFIELD COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 14.6

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

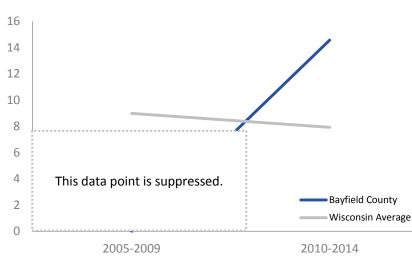
STATEWIDE: 7.9

• 1.4%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

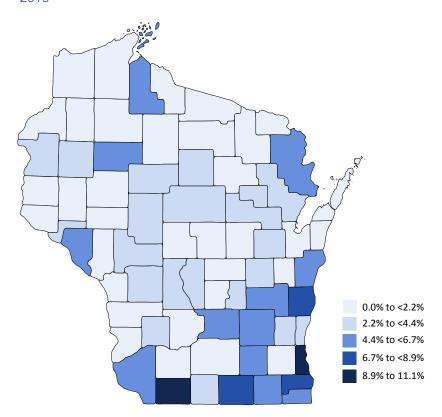
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.

Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

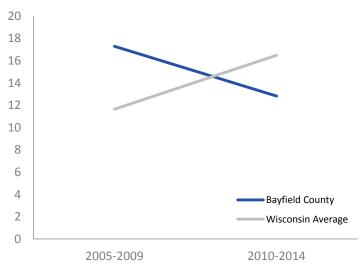
CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL 2015

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


■ 12.8 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 80.1
LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

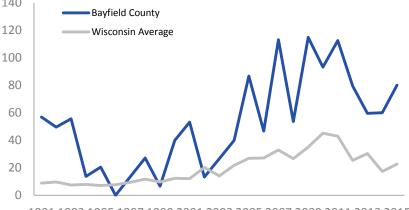
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infectedRAblack-legged tick (*Ixodes scapularis*) and is becoming140more common in Wisconsin. Lyme disease was the
fourth highest reported notifiable communicable120disease in 2015.100

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

• 32.4 ASTHMA RATE OF ER VISITS

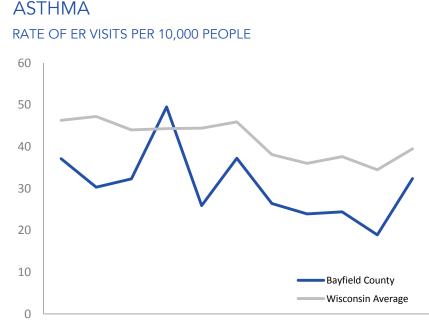
PER 10,000 PEOPLE STATEWIDE: 39.5

• 16.9

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 54.8

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 29.6 HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

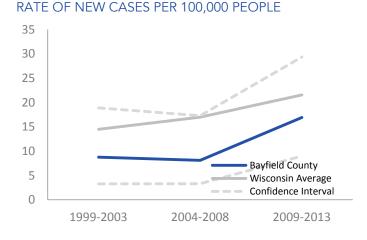

Above state value At or below state value Suppressed

ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

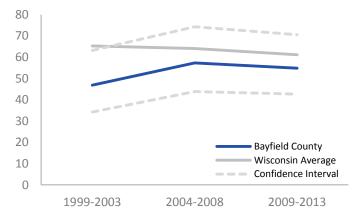
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

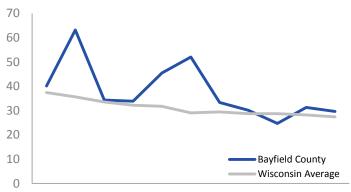

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L) STATEWIDE: 1.5

At or below state value (with exception

of fluoride where above state value is

preferred)

WATER QUALITY BAYFIELD COUNTY

BACKGROUND

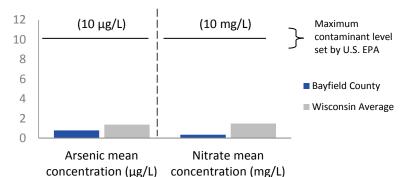
Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.


Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

O.0%
FLUORIDE
PERCENT OF POPULATION WITH
FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY BAYFIELD COUNTY

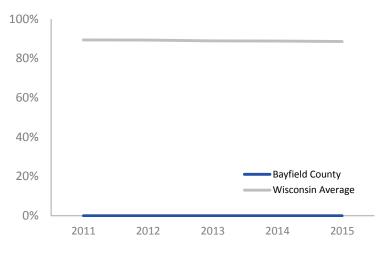
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

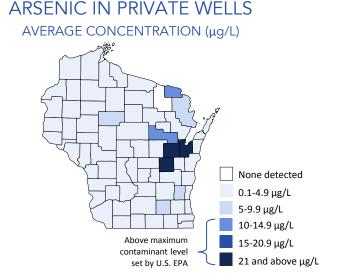

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 (PM_{2.5})" refers to the size of the particles, which are smaller than the width of a human hair.

Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

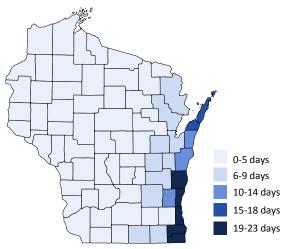
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3

PARTICULATE MATTER 2.5 ANNUAL AVERAGE (µg/m³) STATEWIDE: 9.1

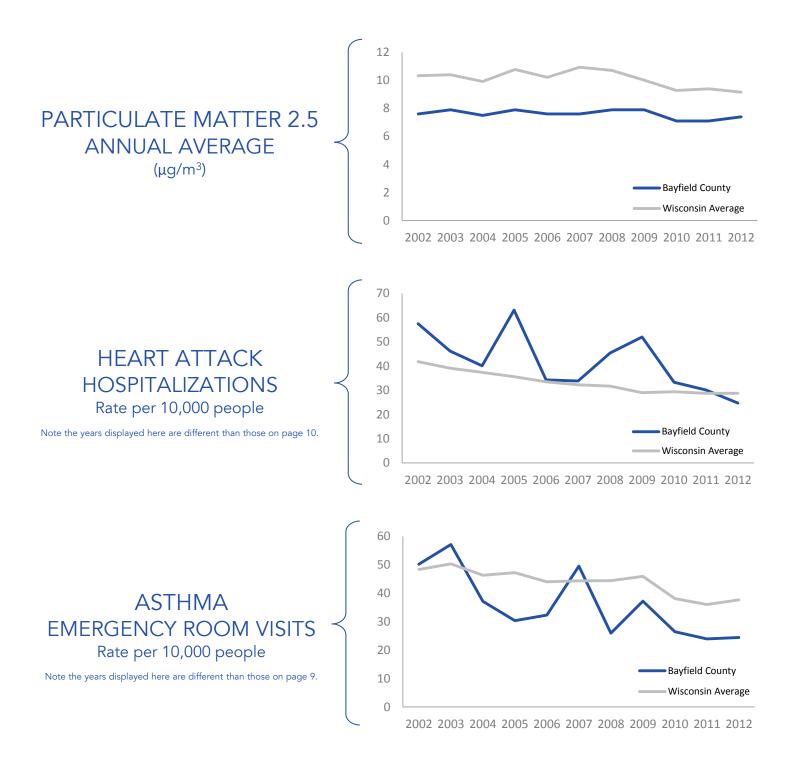
At or below state value Above state value ^ Suppressed

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.


DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 13

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

BROWN COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

BROWN COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS BROWN COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 10.0

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

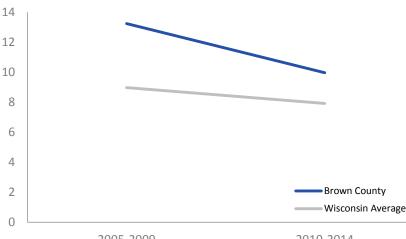
STATEWIDE: 7.9

• 1.5%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value 🥏

At or below state value

alue ^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

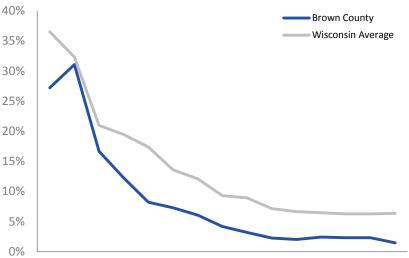
2010-2014

2015

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

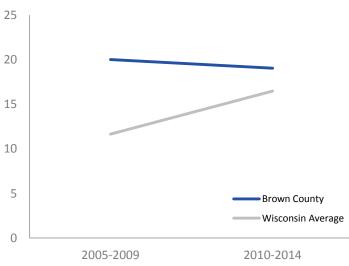
0.0% to <2.2% 2.2% to <4.4% 4.4% to <6.7% 6.7% to <8.9%

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


I 19.0 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 11.6 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

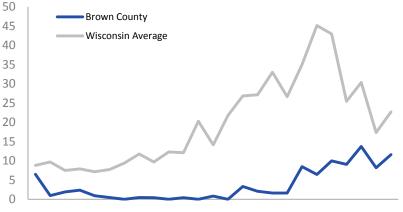
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

STATEWIDE: 39.5
STATEWIDE: 39.5

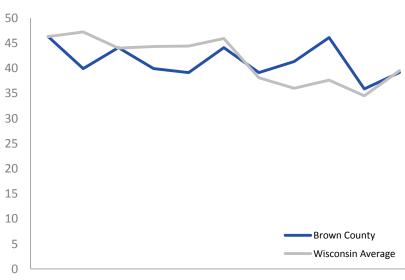
• 31.8

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 58.0

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • **29.1**

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

🕖 Above state value 🛛 🔗 At or below state value 🔷 Suppressed


ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

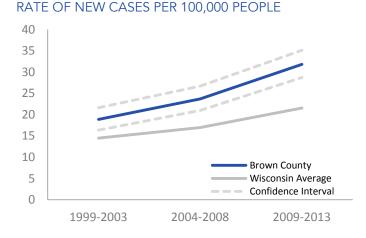
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE

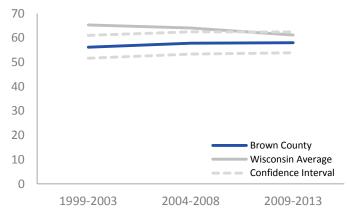
DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 9

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

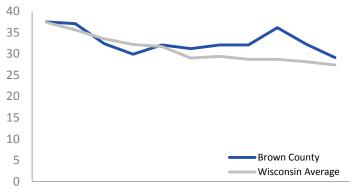

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred)

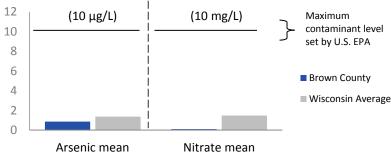
high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5

At or below state value (with exception of fluoride where above state value is preferred)


96.4% FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

concentration (μ g/L) concentration (mg/L)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. **Environmental Protection Agency.**

WATER QUALITY BROWN COUNTY

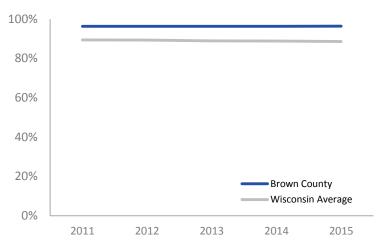
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

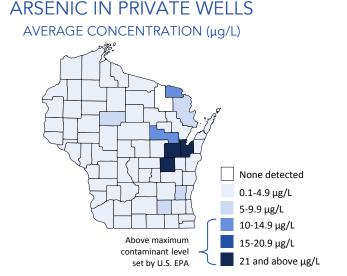

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

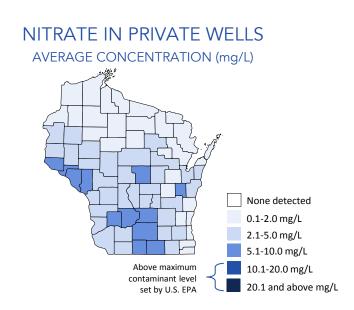
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

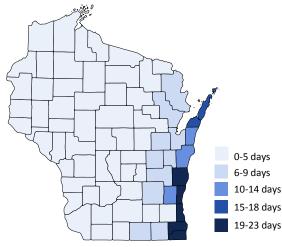
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8 2

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 B.8
 PARTICULATE MATTER 2.5
 ANNUAL AVERAGE (μg/m³) STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE

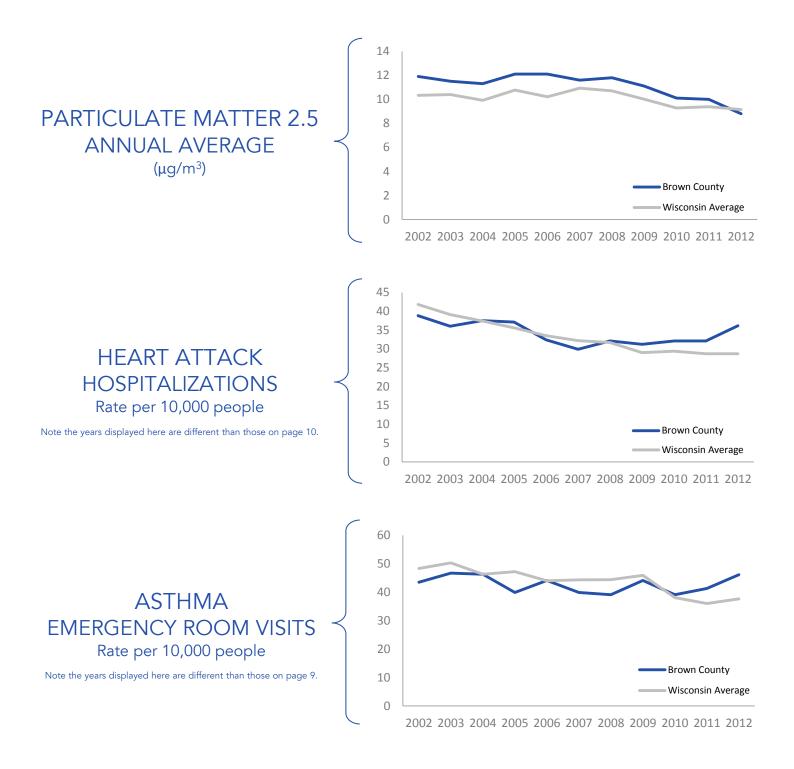
The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.


Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

ounties without monitoring stations have

E STANDARD ANNU, :: 0.3 ST


OZONE ANNUAL DAYS ABOVE STANDARD (2012)

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 13

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

BUFFALO COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

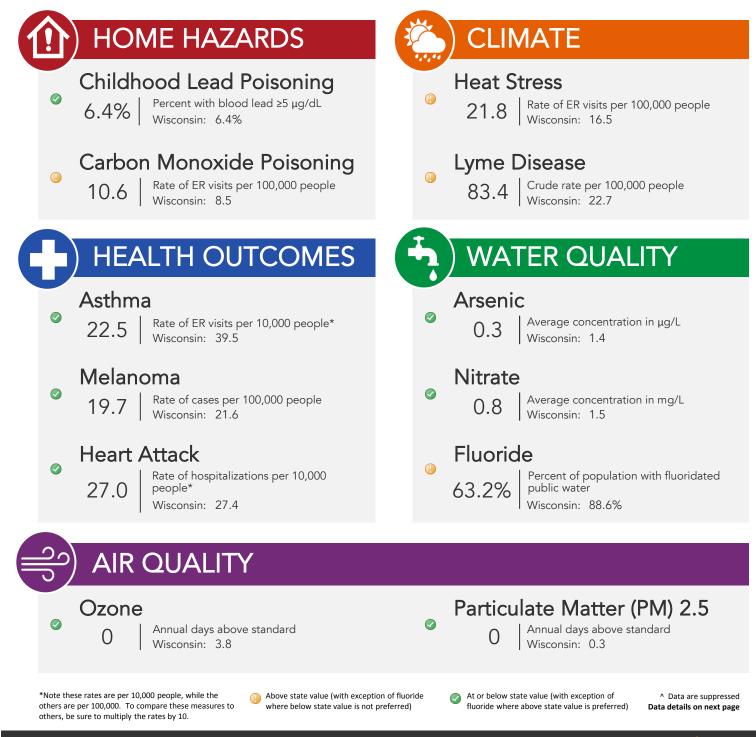
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

BUFFALO COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2005-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS BUFFALO COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 10.6

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

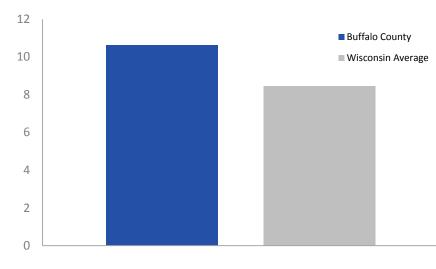
STATEWIDE: 8.5

• 6.4%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE (2005-2014)

CARBON MONOXIDE POISONING

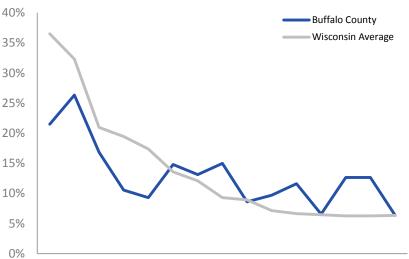
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

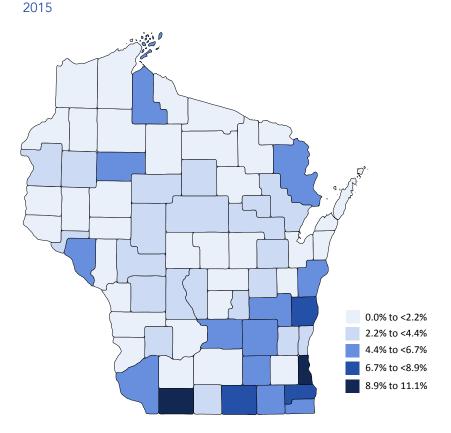
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

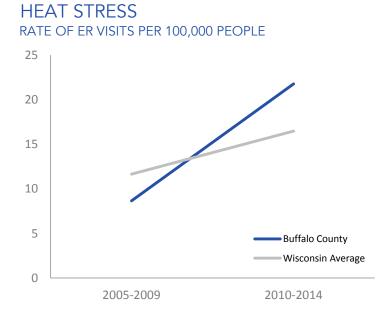
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

$\begin{array}{l} \mbox{CHILDHOOD LEAD POISONING} \\ \mbox{percent of tested children with blood lead} \geq 5 \ \mu g/dL \end{array}$

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

21.8 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 83.4
LYME DISEASE
RATE OF CASES
PER 100,000 PEOPLE
STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

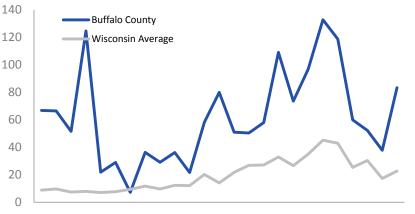
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

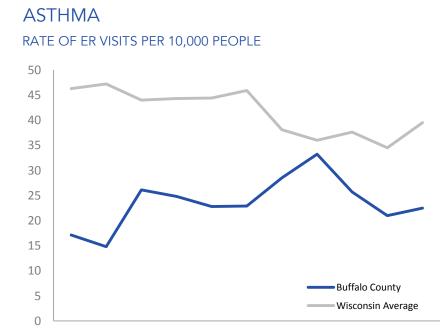
• 222.5 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 19.7

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 52.4

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • 27.0

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


🕕 Above state value 🛛 🧭 At or below state value 🔹 ^ Suppressed

ASTHMA

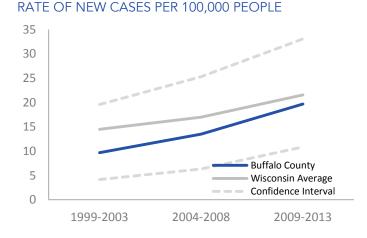
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

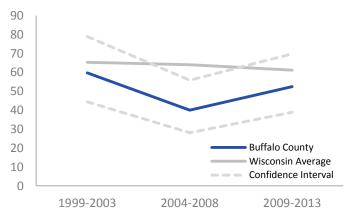
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 DIVE

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

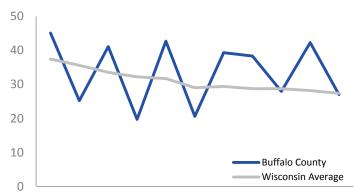
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L) STATEWIDE: 1.5

At or below state value (with exception

of fluoride where above state value is

preferred)

BACKGROUND

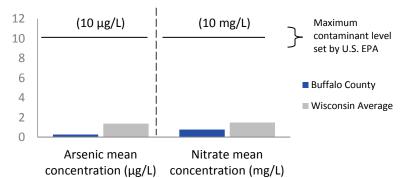
Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.


Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

> Bandwidth Bercent of Population with FLUORIDATED PUBLIC WATER

> > STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY BUFFALO COUNTY

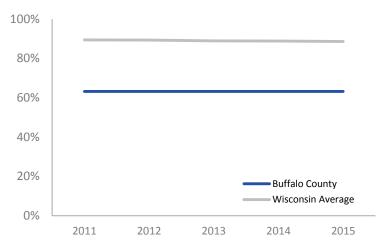
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

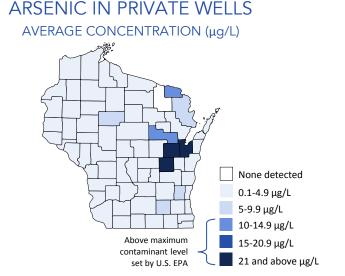

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

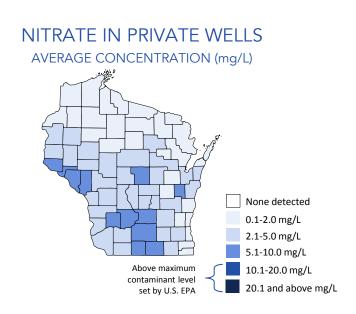
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



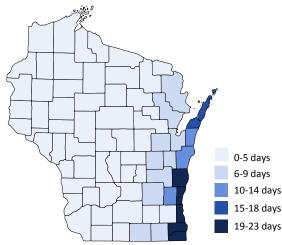

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

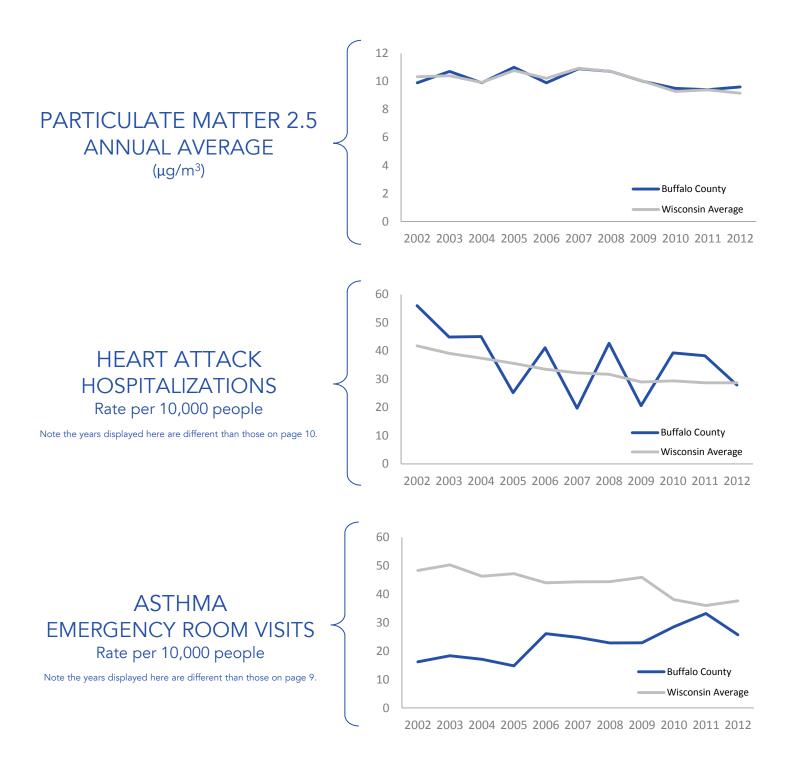
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 9.6
PARTICULATE MATTER 2.5
ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level $\geq 5 \ \mu g/dL$

Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: Averaged data from 2005-2014

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 ,E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population. These data were averaged over ten years for five counties in order to minimize supression.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

BURNETT COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

BURNETT COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS BURNETT COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

8.1

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

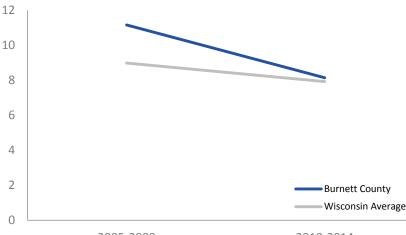
STATEWIDE: 7.9

• 0.0%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

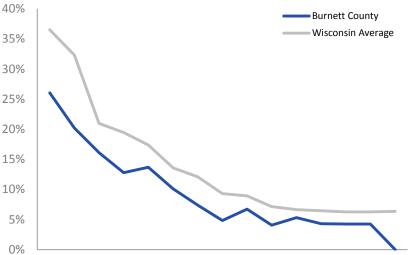
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

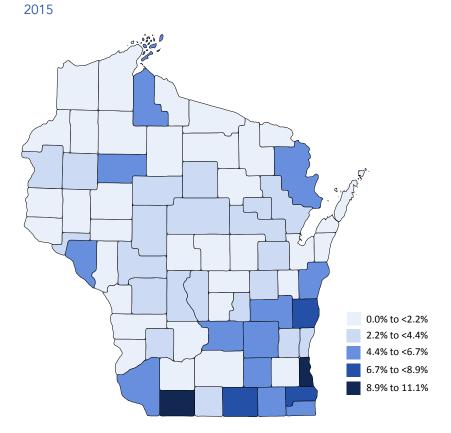
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

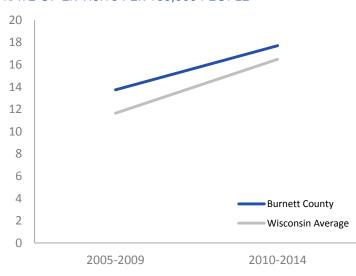
CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

17.7
 HEAT STRESS
 RATE OF ER VISITS
 PER 100,000 PEOPLE
 STATEWIDE: 16.5


66.0
 Constant State of Cases
 PER 100,000 PEOPLE
 STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE

HEAT STRESS

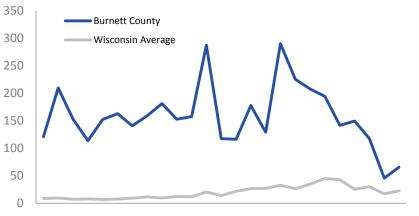
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

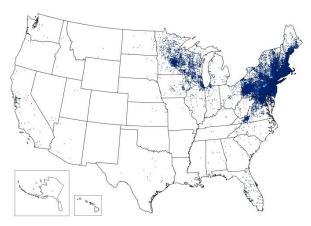
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

28.3 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 17.4

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • **75.8**

RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 27.0
 HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

Above state value At or below state value Suppressed


ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

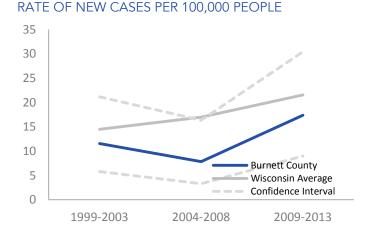
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE

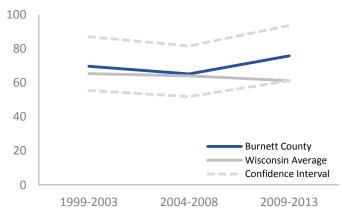
DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 9

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

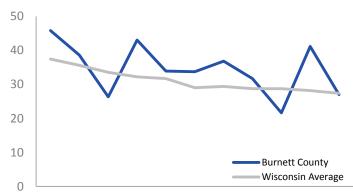
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> **2.1** ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

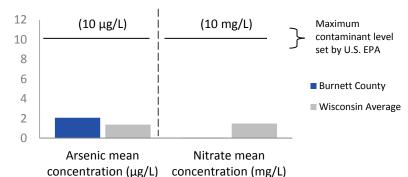
STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) O.O% FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY BURNETT COUNTY

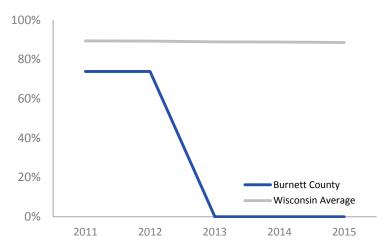
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

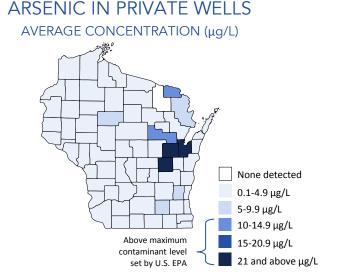

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

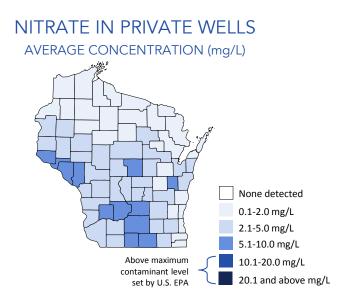
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

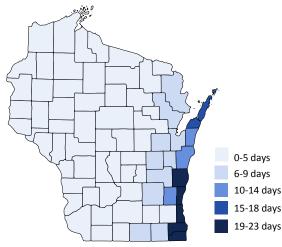
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 B.6
 PARTICULATE MATTER 2.5
 ANNUAL AVERAGE (μg/m³) STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

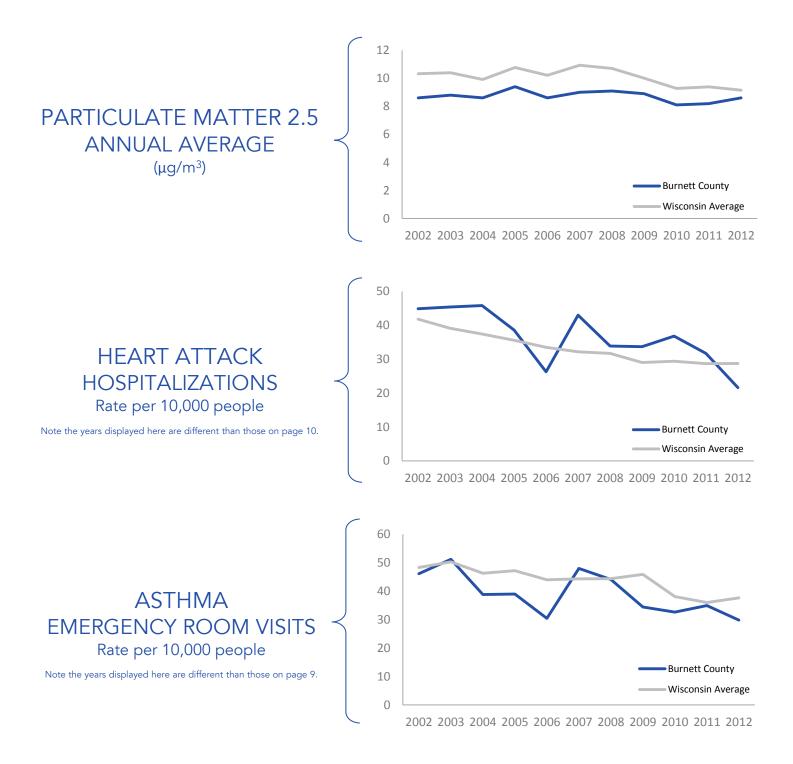
OZONE

The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.


Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

onditions like asthma. Levels of these pollounties without monitoring stations have e


DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 13

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

CALUMET COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

CALUMET COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health WISCONSIN

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

HOME HAZARDS CALUMET COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

3.6

CARBON MONOXIDE

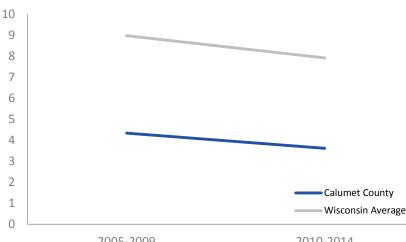
POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

2.0%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

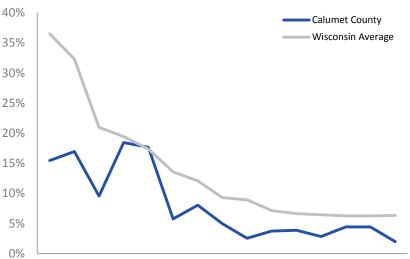
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

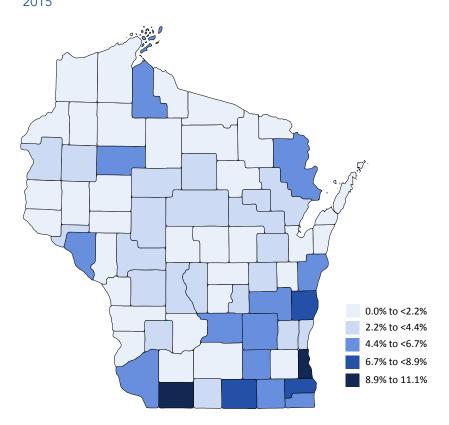
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

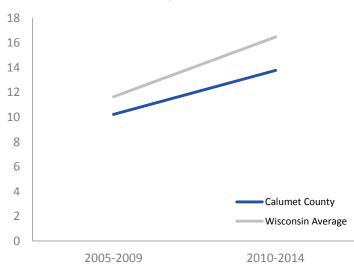
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL 2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


■ 13.8 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 2.0
LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

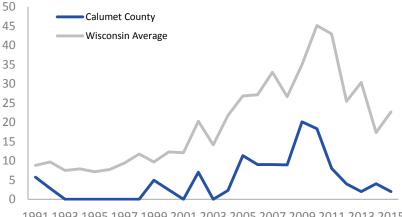
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

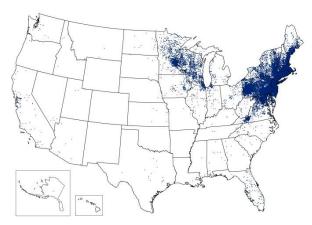
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

17.3 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE

STATEWIDE: 39.5

32.1

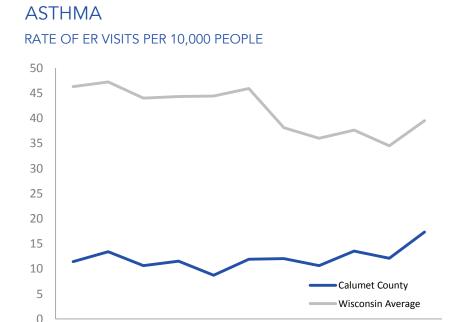
MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6

• 53.3 LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1

19.1 HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

STATEWIDE: 27.4


Above state value At or below state value ^ Suppressed

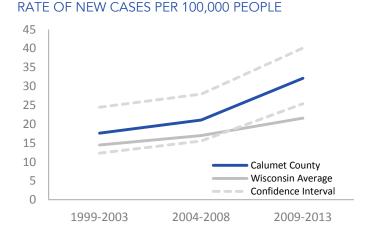
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

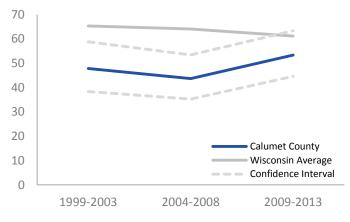
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our asthma disparities survillance brief, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

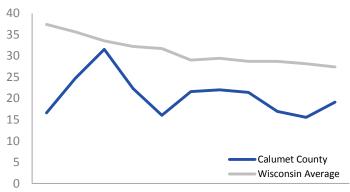

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> I.5 ARSENIC
> AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

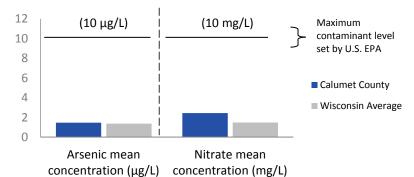
STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

B 2.4 NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) PERCENT OF POPULATION WITH

FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY CALUMET COUNTY

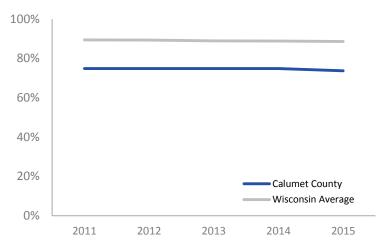
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

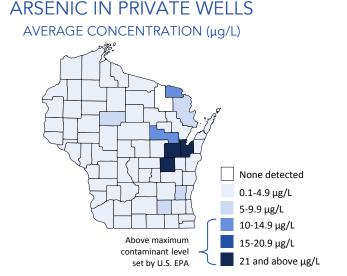

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

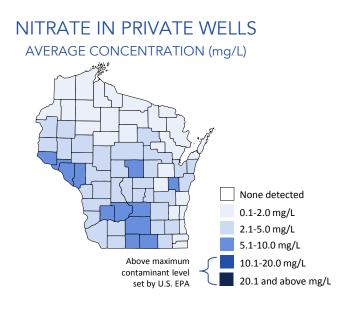
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



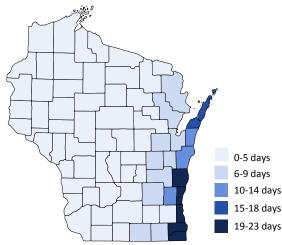

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

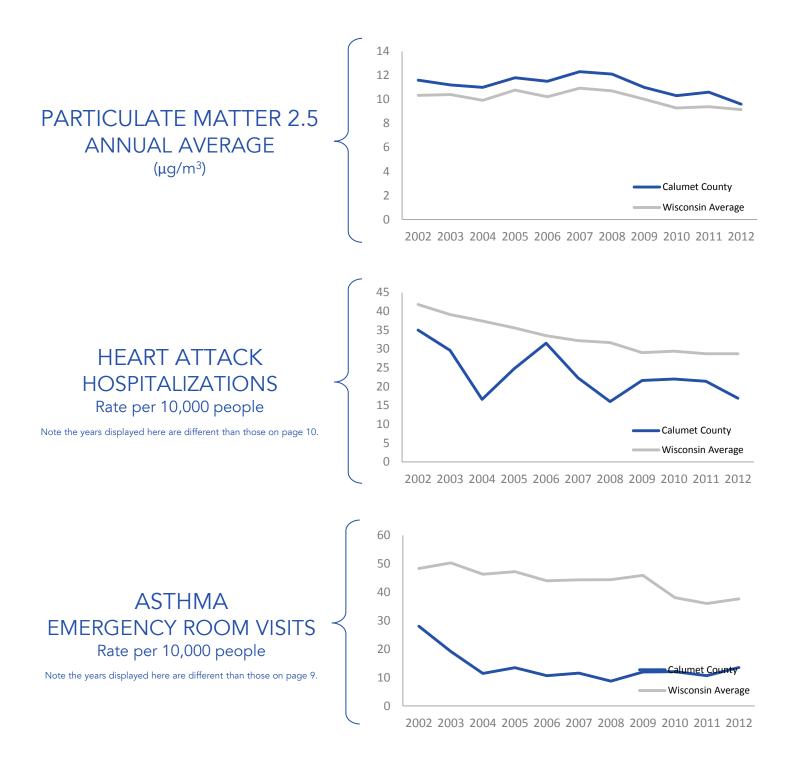
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8 2

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 9.6
PARTICULATE MATTER 2.5
ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

CHIPPEWA COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

CHIPPEWA COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS CHIPPEWA COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 8.5

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

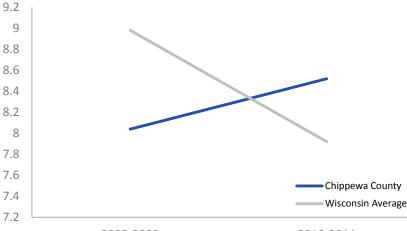
STATEWIDE: 7.9

• 1.8%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

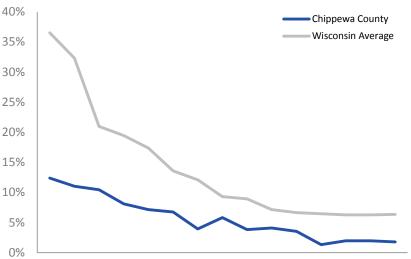
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

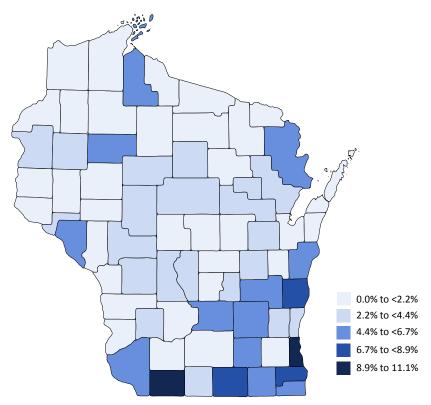
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

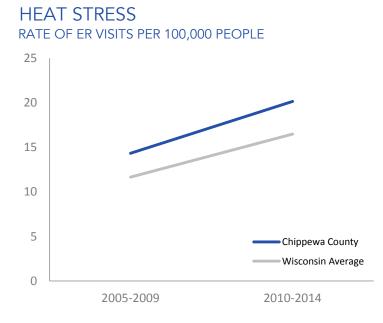
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

2015 PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

20.1 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 64.5 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

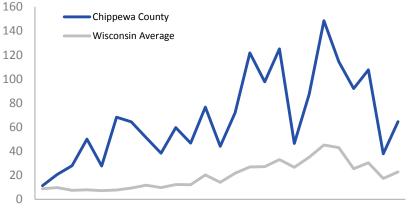
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

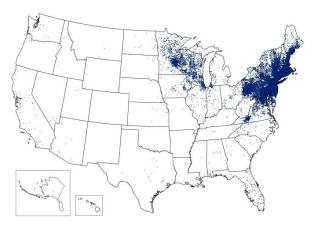
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

• 15.4 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 23.4

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6

66.1 LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1

27.3

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

Above state value At or below state value ^ Suppressed

ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

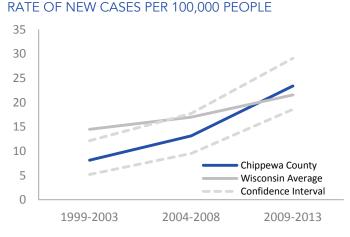
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our asthma disparities survillance brief, available in the resources section of our website.

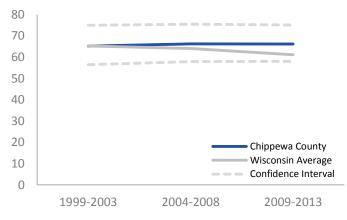
DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

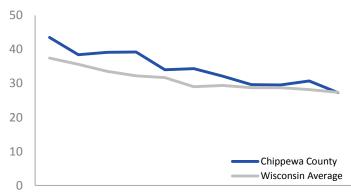
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

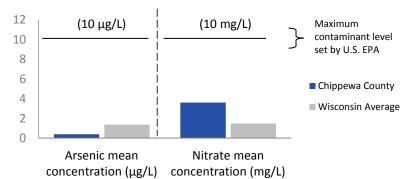
> ♥ U.4 ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

3.6 NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)


STATEWIDE: 1.5

At or below state value (with exception of fluoride where above state value is preferred) I 15.5% FLUORIDE
PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY CHIPPEWA COUNTY

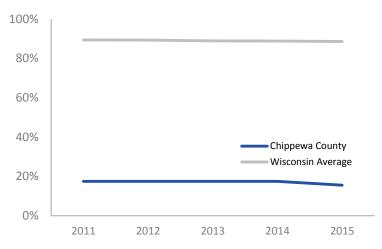
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

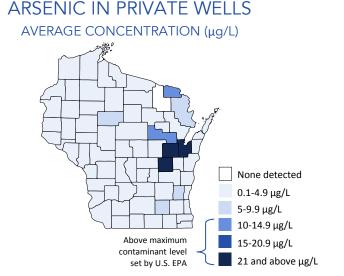

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

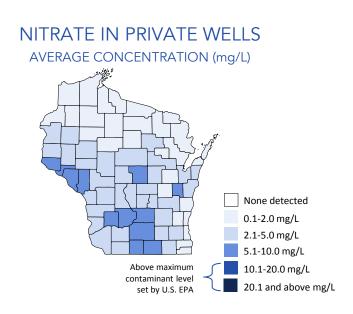
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER

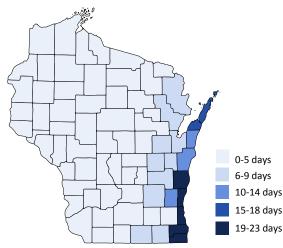



*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

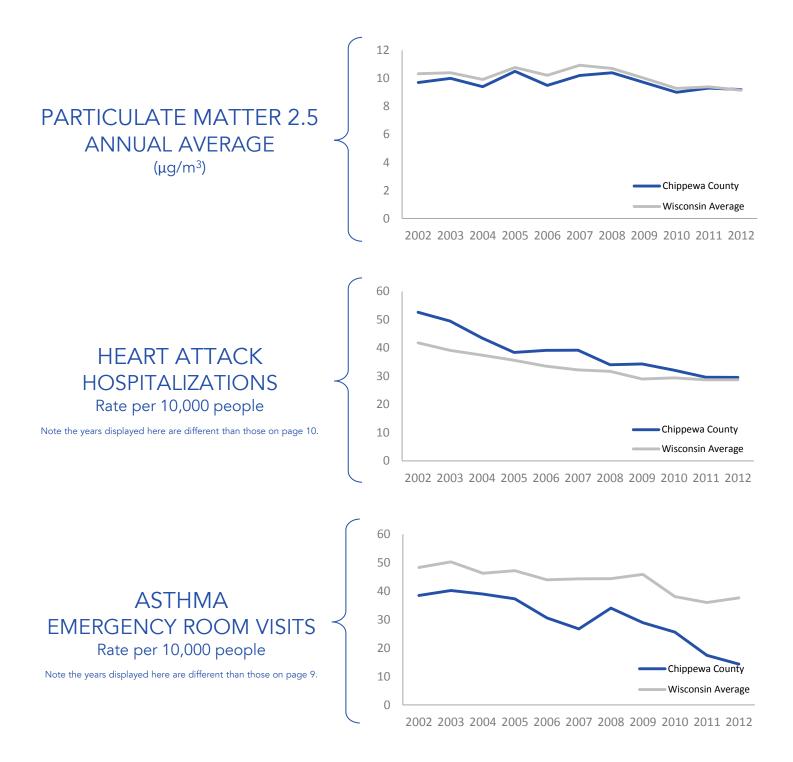
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 9.2
PARTICULATE MATTER 2.5
ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

CLARK COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

CLARK COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(HOME HAZARDS CLARK COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 8.3

CARBON MONOXIDE

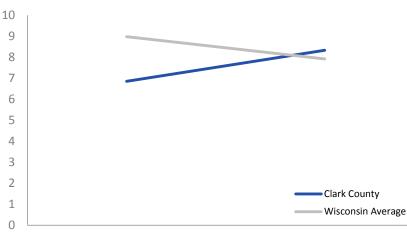
POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

• 3.7%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

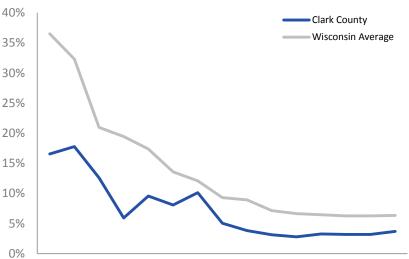
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

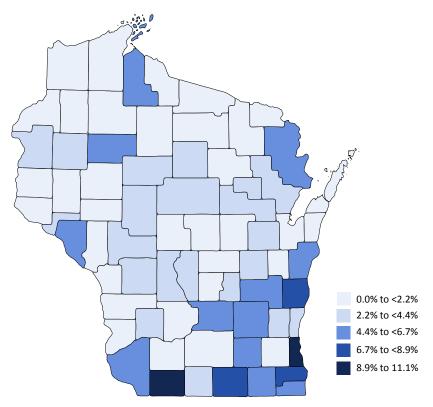
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

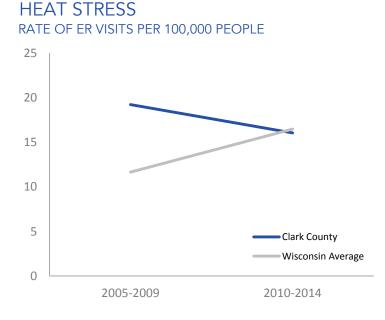
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ${\geq}5~\mu\text{g/dL}$ 2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

■ 16.0 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 34.8 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE

Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

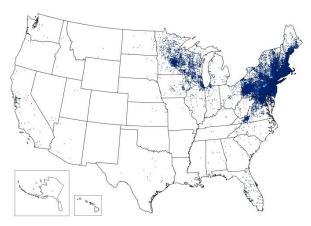
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

ITTLE ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE

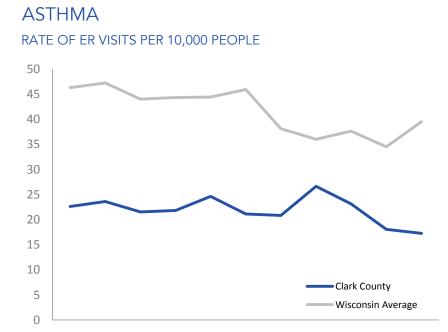
STATEWIDE: 39.5

• 16.4

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 52.3

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • **41.8** HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value At or below state value Suppressed

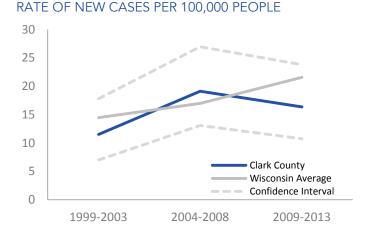
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

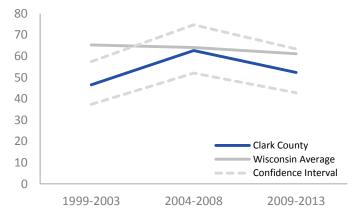
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

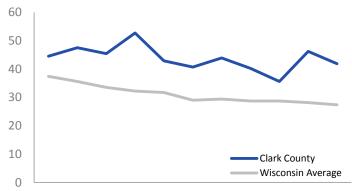

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> CONTRACTION ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (μg/L)

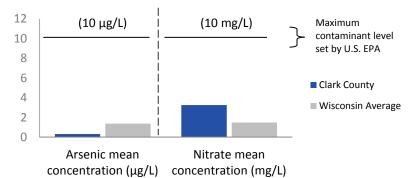
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) **60.1% FLUORIDE PERCENT OF POPULATION WITH**

FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY CLARK COUNTY

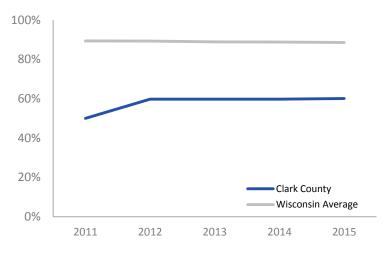
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

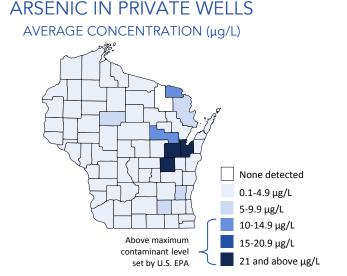

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

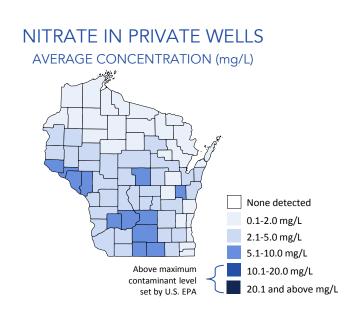
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



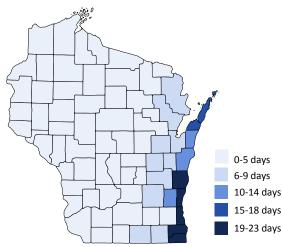

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

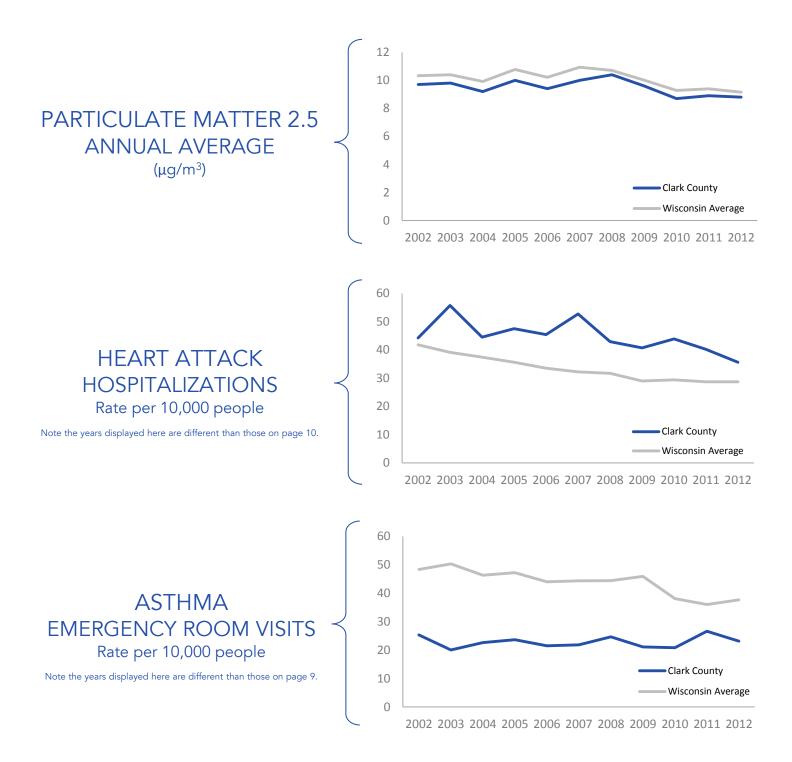
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **8.8** PARTICULATE MATTER 2.5
 ANNUAL AVERAGE (μg/m³)
 STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

2017

COLUMBIA COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

COLUMBIA COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

HOME HAZARDS COLUMBIA COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

10.5

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

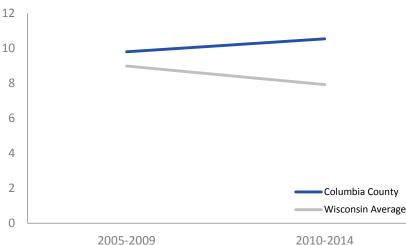
STATEWIDE: 7.9

5.0%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

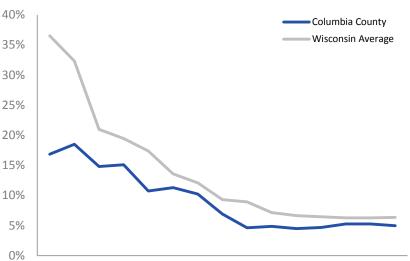
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

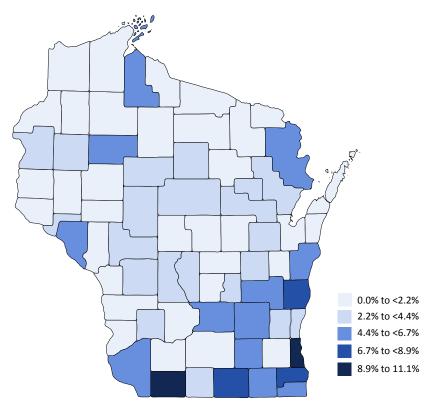
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

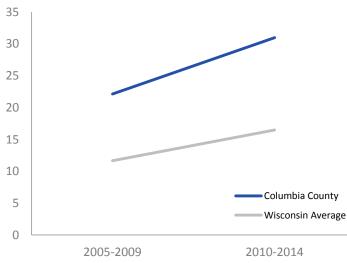
CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ${\geq}5~\mu\text{g/dL}$ 2015

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

Batter of ervisits per 100,000 people STATEWIDE: 16.5 • 75.8 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value ^ Suppressed

HEAT STRESS

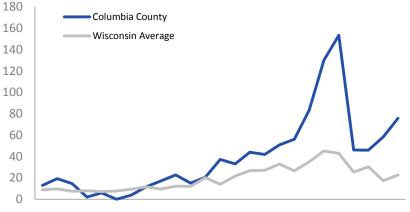
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

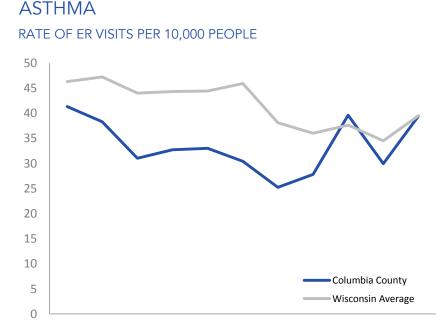
Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

STATEWIDE: 39.5
STATEWIDE: 39.5

22.8

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 64.3

RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 28.3 HEART ATTACK


RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

ASTHMA

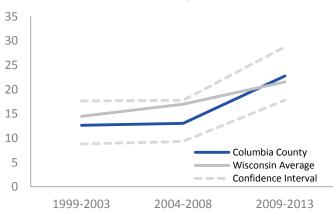
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

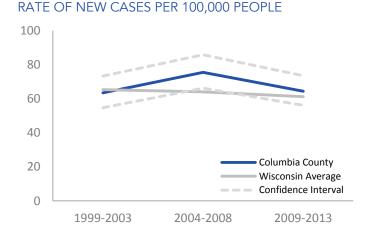
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

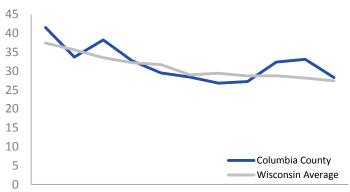

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE


HEART ATTACK

A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> I.6 ARSENIC
> AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

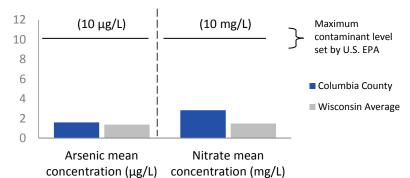
STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

2.8
 NITRATE
AVERAGE CONCENTRATION
IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 78.3% FLUORIDE PERCENT OF POPULATION WITH

FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY COLUMBIA COUNTY

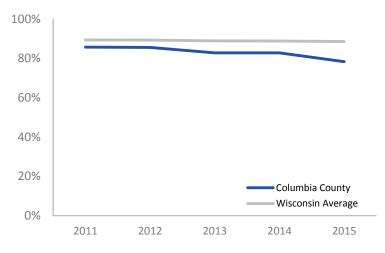
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

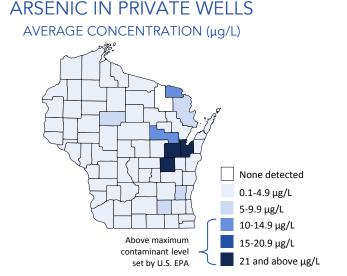

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

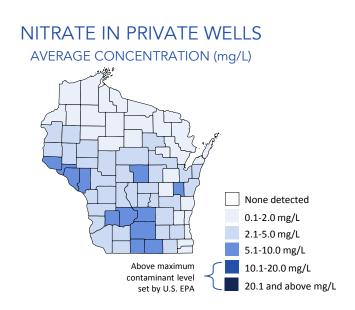
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

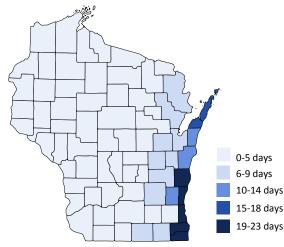
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 PARTICULATE MATTER 2.5 ANNUAL AVERAGE (µg/m³) STATEWIDE: 9.1

O Above state value
O At or below state value
A Suppressed

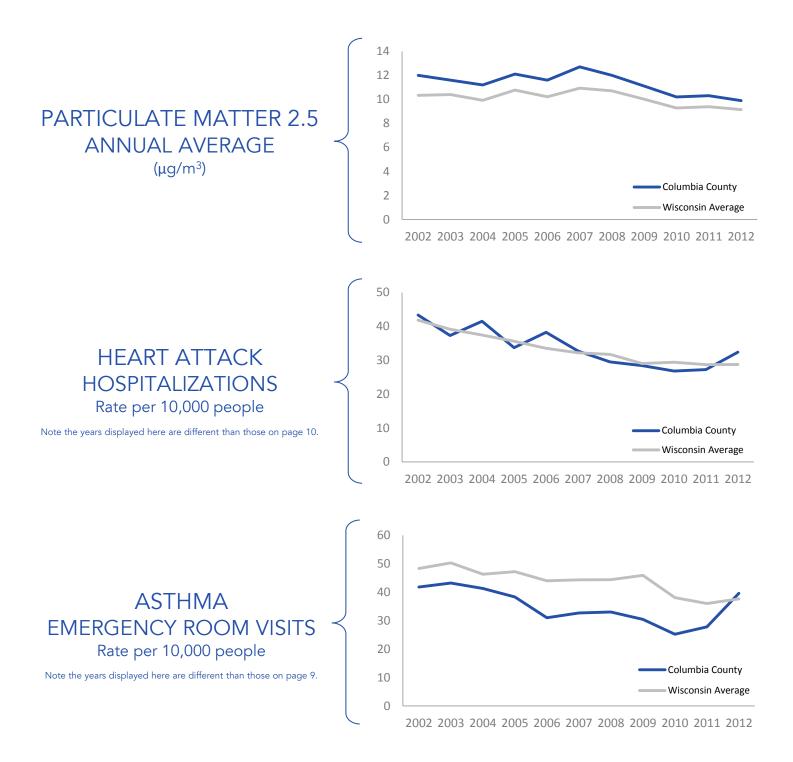
OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

r 2.5 (PM_{2.5})" refers to the size of the partie d industrial facilities. Both particulate mat


OZONE ANNUAL DAYS ABOVE STANDARD (2012)

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 13

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

CRAWFORD COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

CRAWFORD COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS CRAWFORD COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 6.2

CARBON MONOXIDE

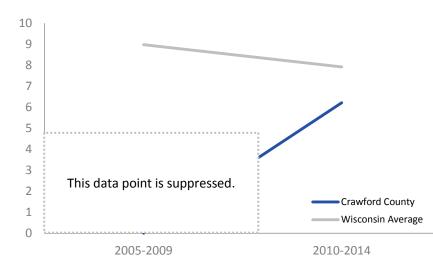
POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

• 1.8%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

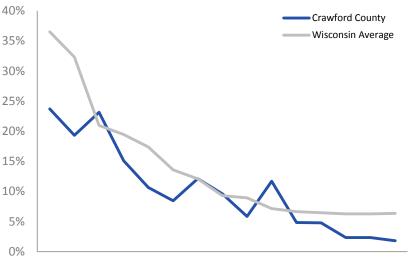
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

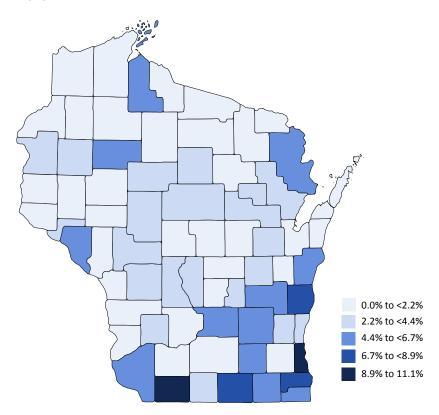
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

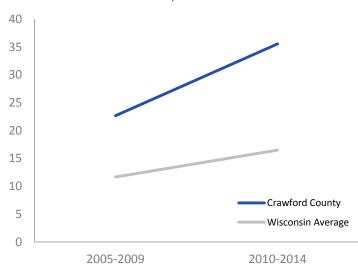
CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL 2015

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


Base 35.5 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 73.2 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE

HEAT STRESS

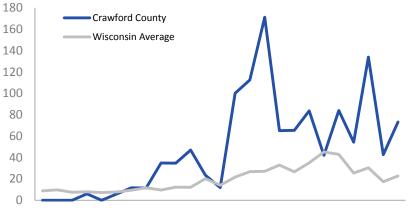
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

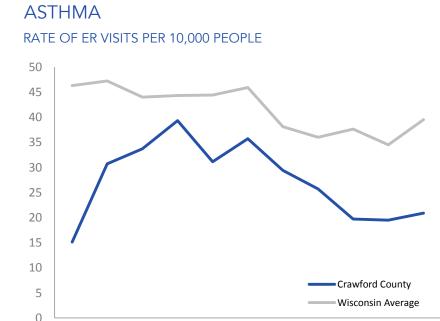
BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

20.9 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5 • 21.6

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 62.5 LUNG CANCER RATE OF NEW CASES

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 24.5
 HEART ATTACK
 RATE OF HOSPITALIZATIONS


PER 10,000 PEOPLE STATEWIDE: 27.4

ASTHMA

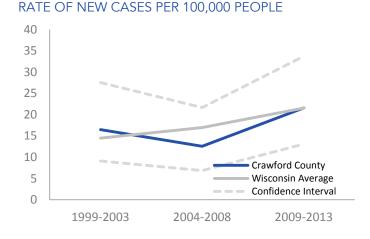
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

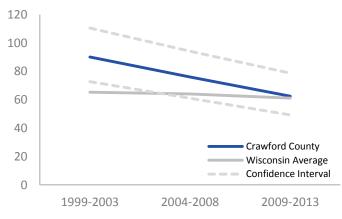
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

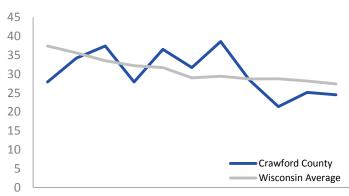

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE


HEART ATTACK

A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L) STATEWIDE: 1.5

At or below state value (with exception

of fluoride where above state value is

preferred)

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

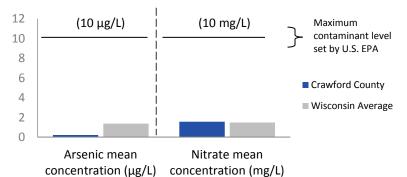
Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.


> FLUORIDE PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

0.0%

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

> DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 11

WATER QUALITY CRAWFORD COUNTY

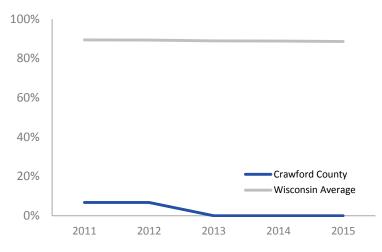
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

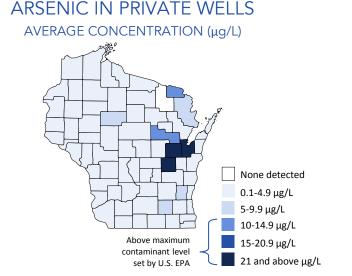

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

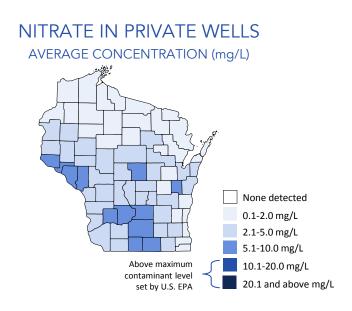
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



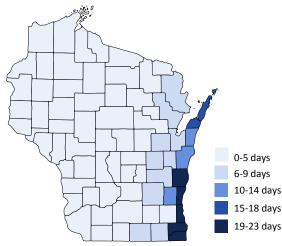

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

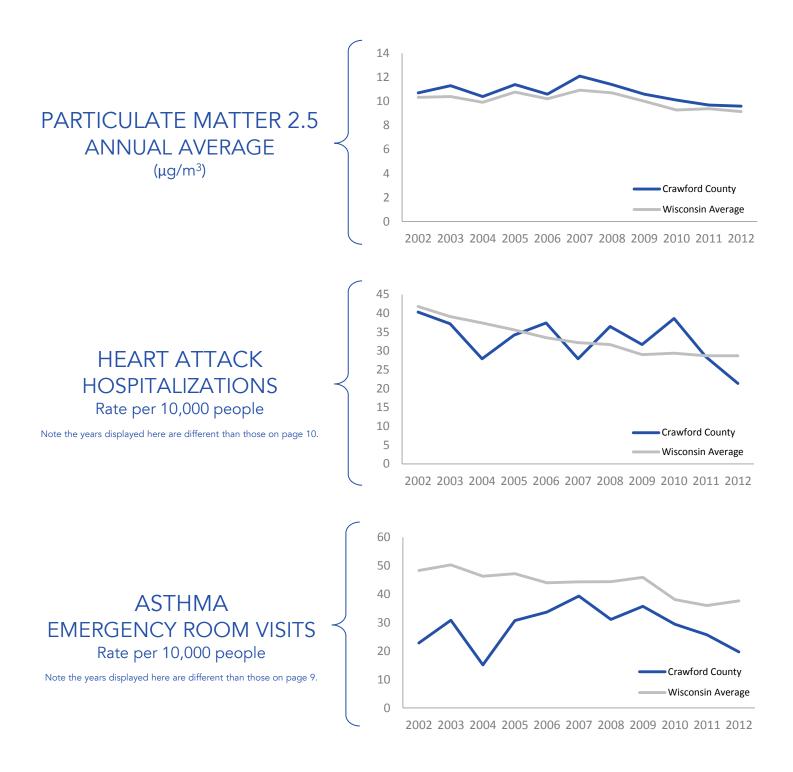
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 9.6
PARTICULATE MATTER 2.5
ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

DANE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

DANE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS DANE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 5.3

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

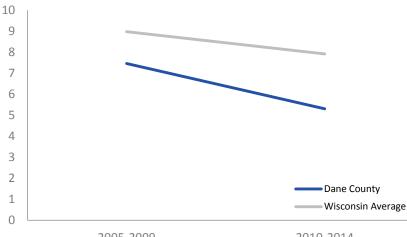
STATEWIDE: 7.9

• 0.9%

CHILDHOOD LEAD POISONING

 $\begin{array}{l} \mbox{PERCENT OF TESTED CHILDREN} \\ \mbox{WITH BLOOD LEAD} \geq 5 \ \mbox{\mug/dL} \end{array}$

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

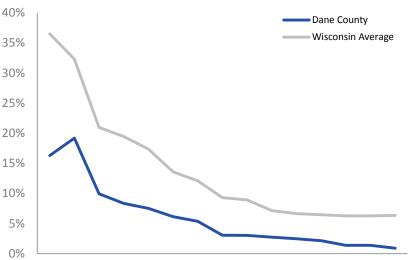
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

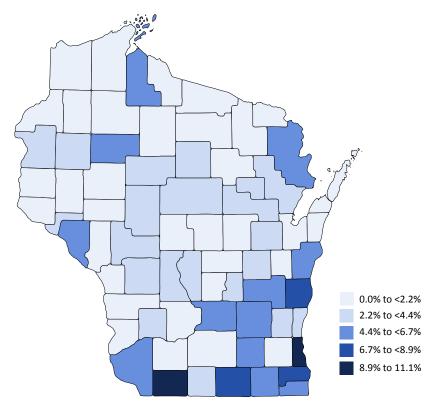
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

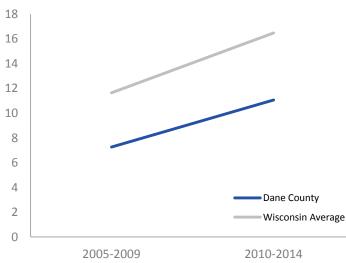
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD 25 µg/dL

2015 PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 ● 15.7
LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value ^ Suppressed

HEAT STRESS

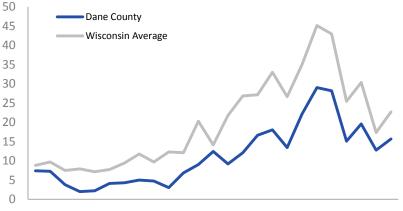
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

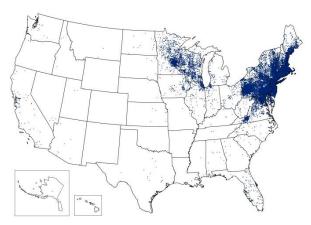
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

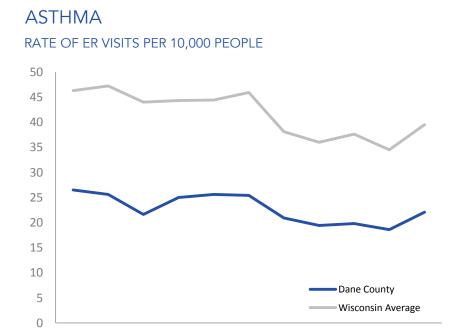
■ 222.1 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 26.3

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 54.3

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 22.8
 HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value At or below state value Suppressed

ASTHMA

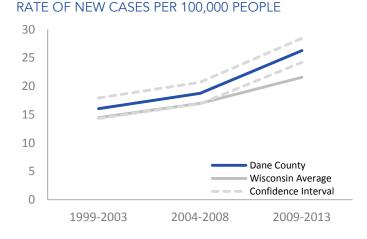
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

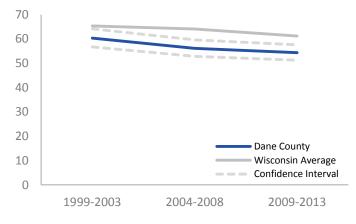
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

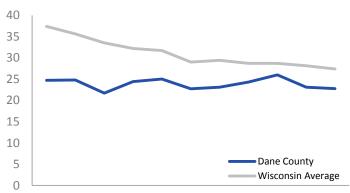
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

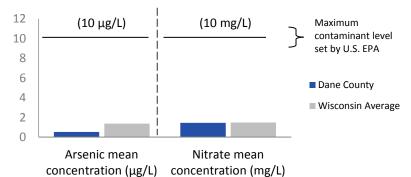
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 99.0% FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY DANE COUNTY

FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

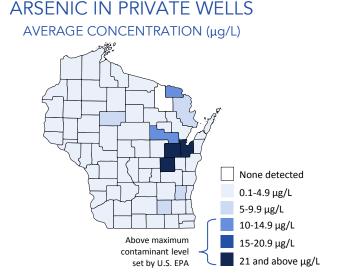
About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

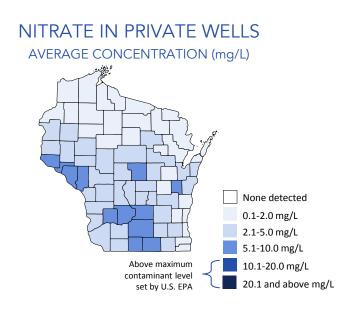
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



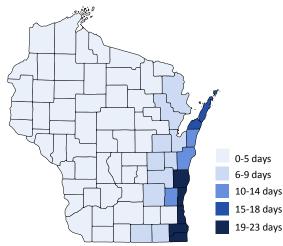

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

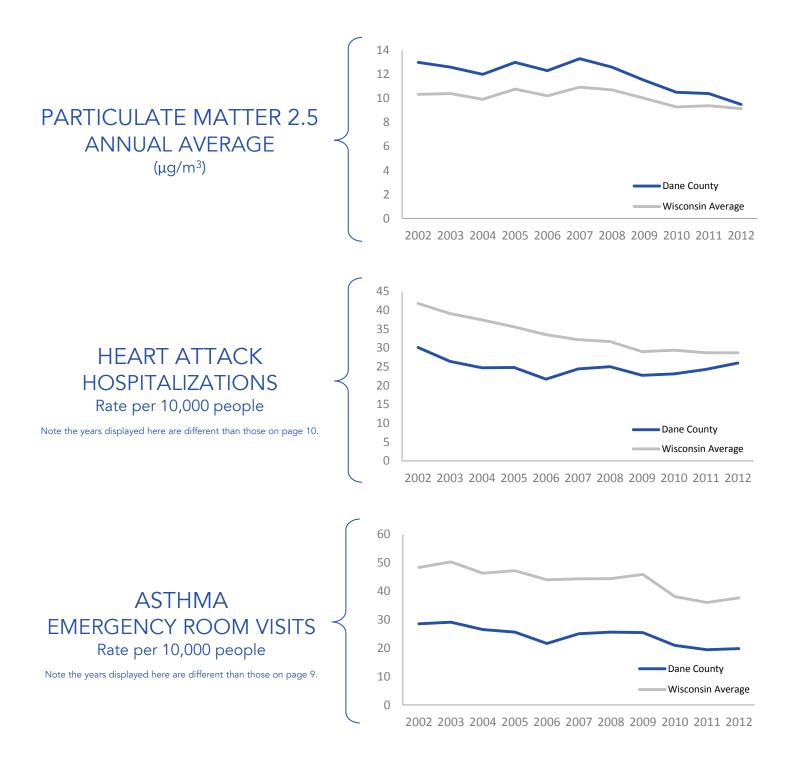
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 9.5
PARTICULATE MATTER 2.5
ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

4 Above state value At or below state value Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

DODGE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

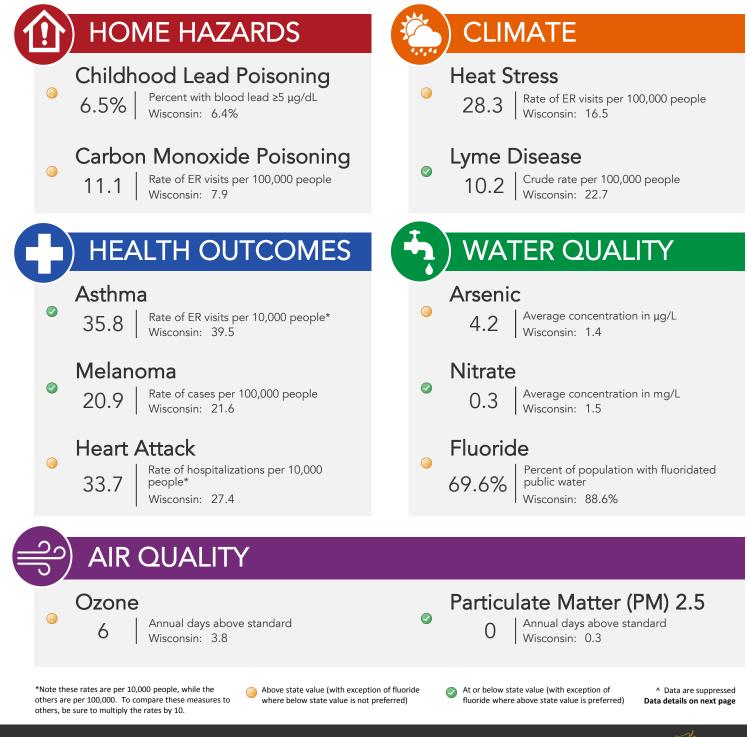
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

DODGE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

HOME HAZARDS DODGE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

11.1

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

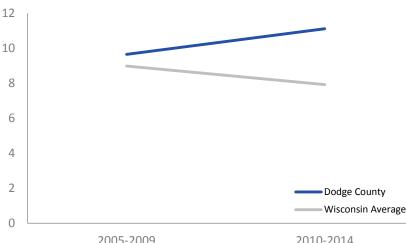
STATEWIDE: 7.9

6.5%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

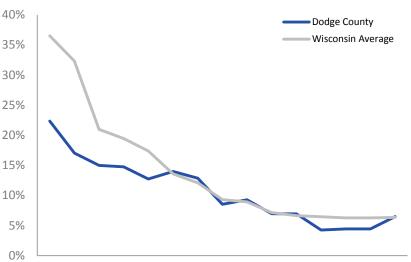
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

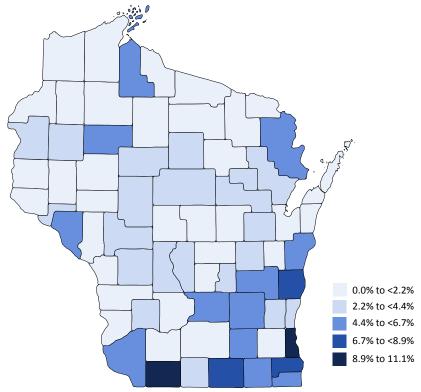
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

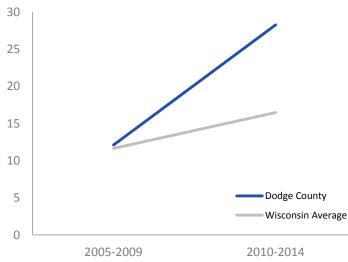
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEA

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL 2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

Barte of er visits per 100,000 people STATEWIDE: 16.5 • 10.2 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value ^ Suppressed

HEAT STRESS

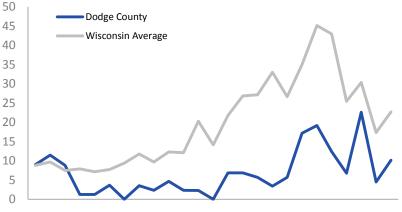
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

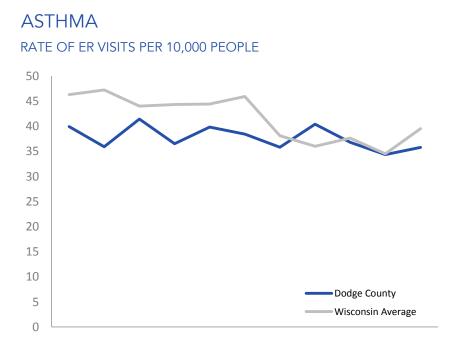
Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

Solution States Sta

20.9

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 58.6


LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 33.7
 HEART ATTACK
 RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

ASTHMA

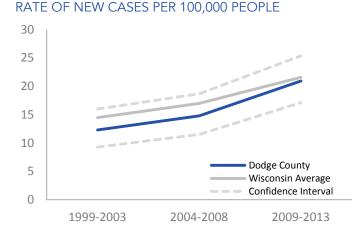
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

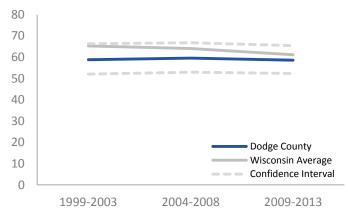
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

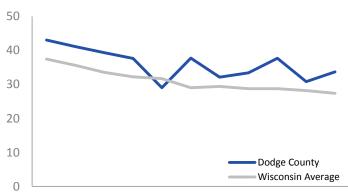

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC
> AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

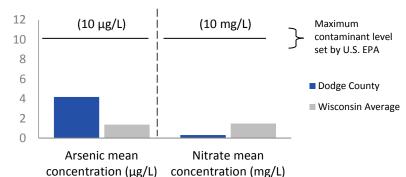
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 69.6%
FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY DODGE COUNTY

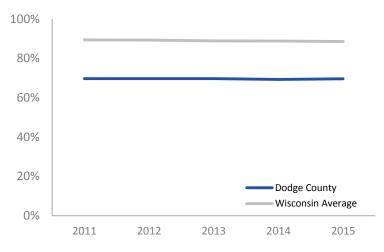
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

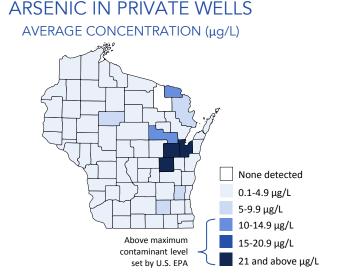

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

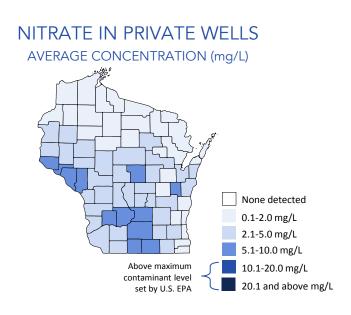
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



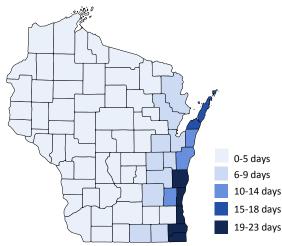

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

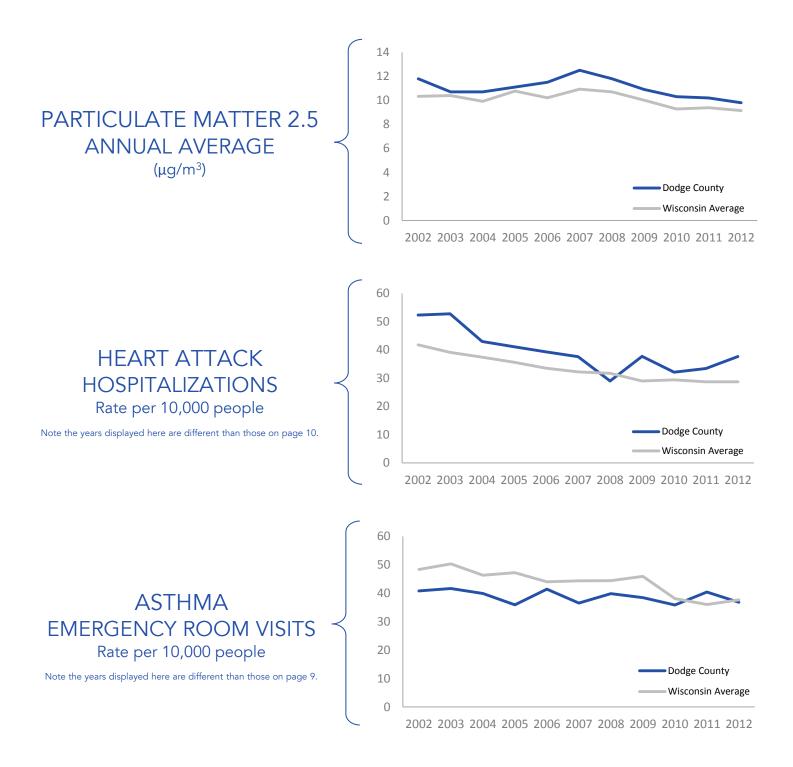
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **9.8 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

DOOR COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

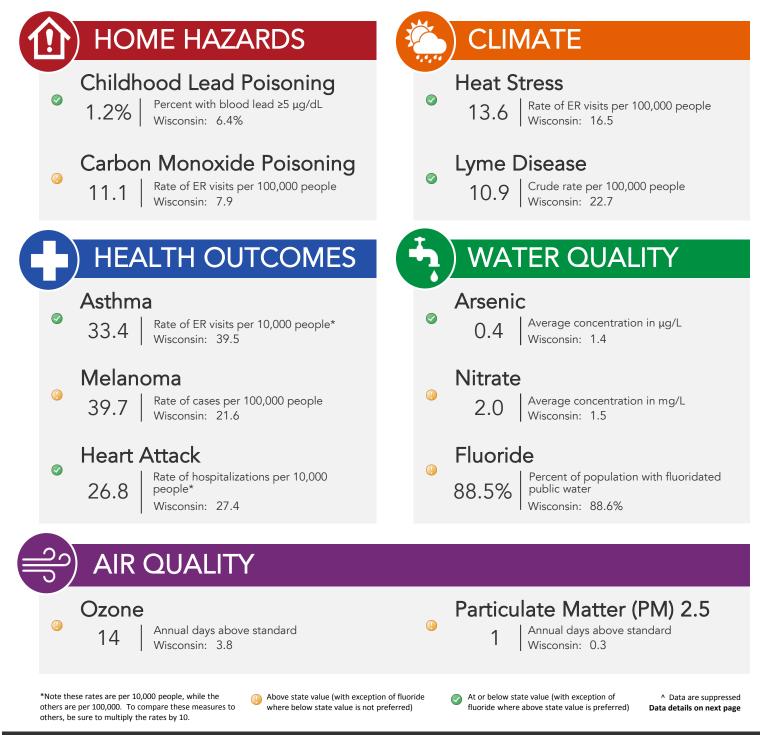
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

DOOR COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS DOOR COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 11.1

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

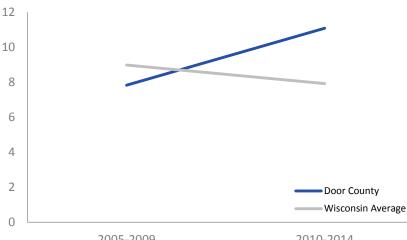
STATEWIDE: 7.9

• 1.2%

CHILDHOOD LEAD POISONING

 $\begin{array}{l} \mbox{PERCENT OF TESTED CHILDREN} \\ \mbox{WITH BLOOD LEAD} \geq 5 \ \mbox{\mug/dL} \end{array}$

STATEWIDE: 6.4%


Above state value 🥥

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

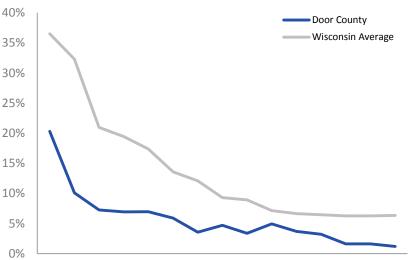
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

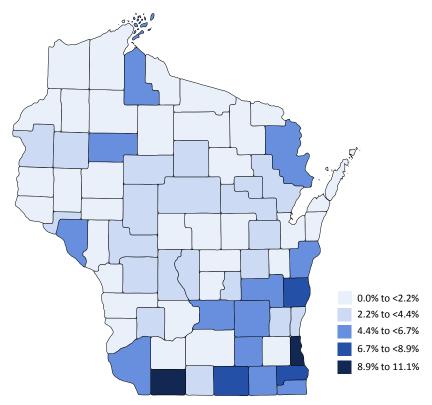
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

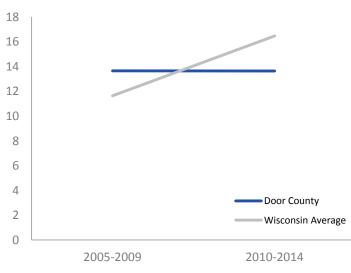
CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD 25 µg/dL

2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


■ 13.6 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 10.9
 LYME DISEASE
 RATE OF CASES
 PER 100,000 PEOPLE
 STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

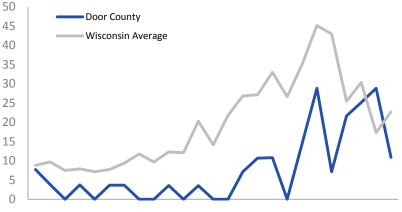
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

• 33.4 ASTHMA RATE OF ER VISITS

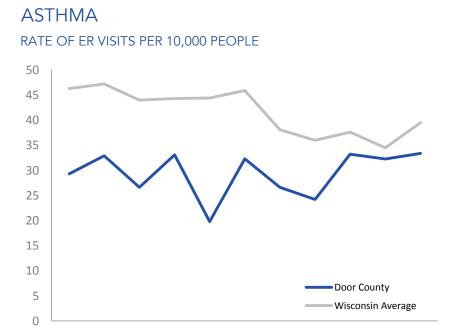
> PER 10,000 PEOPLE STATEWIDE: 39.5

39.7

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 53.8

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 26.8
 HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value
At or below state value
Suppressed

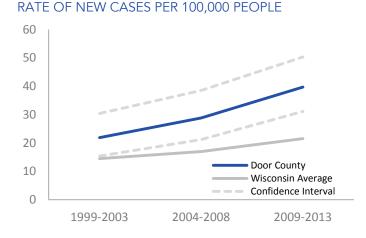
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

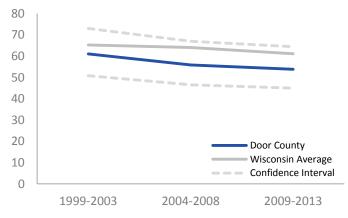
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

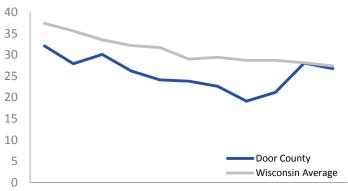

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ✓ U.4 ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

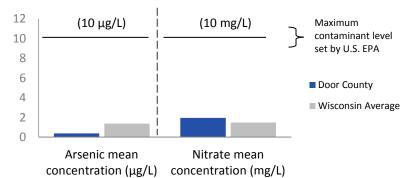
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

2.0 NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 88.5%
FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY DOOR COUNTY

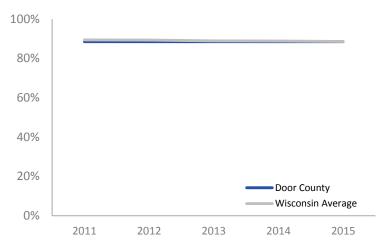
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

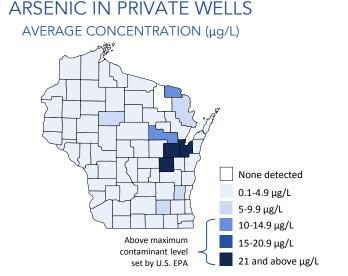

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

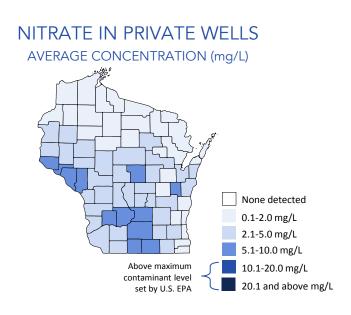
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



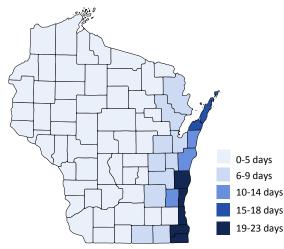

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

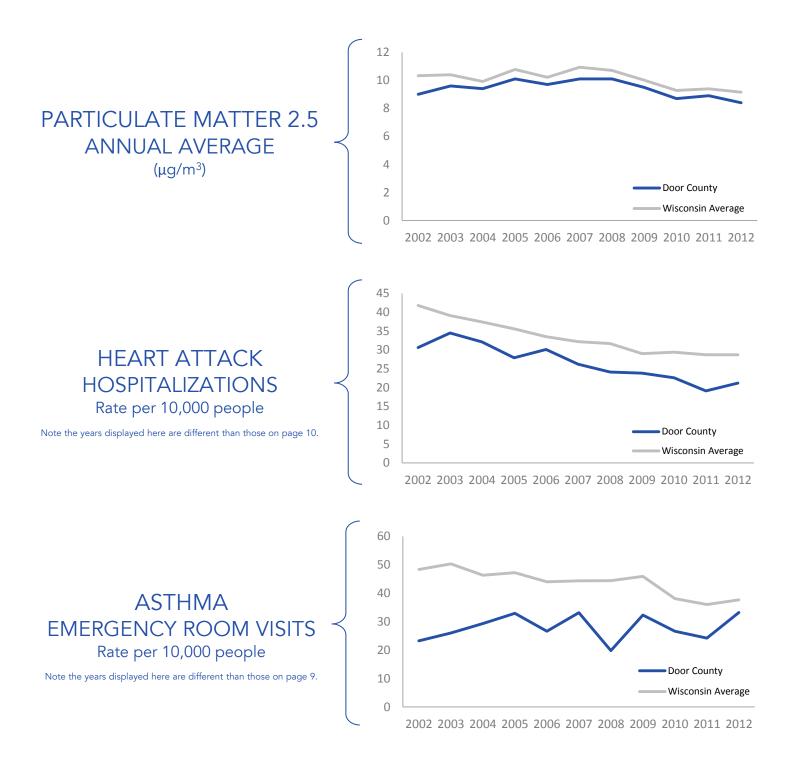
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **8.4 PARTICULATE MATTER 2.5** ANNUAL AVERAGE (μg/m³) STATEWIDE: 9.1

4 Above state value
At or below state value
Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

DOUGLAS COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

DOUGLAS COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

HOME HAZARDS DOUGLAS COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

11.5

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

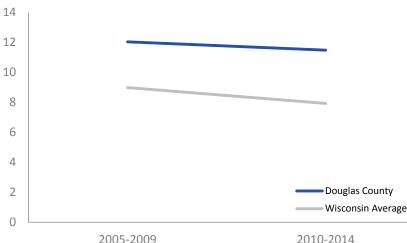
STATEWIDE: 7.9

0.7%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

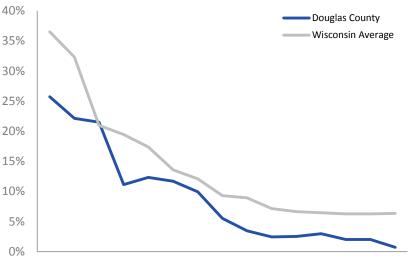
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

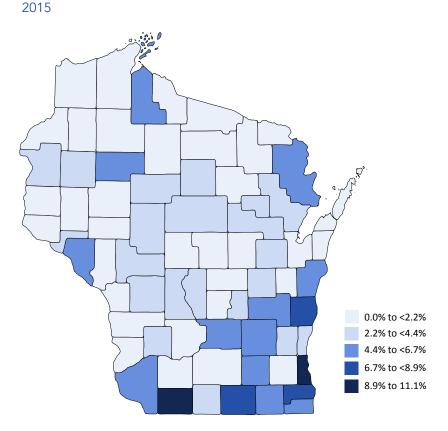
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

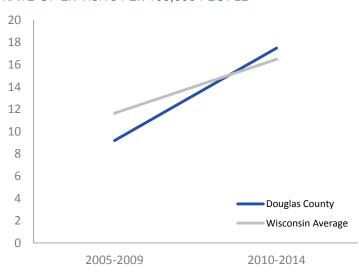
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


ITTES HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 48.2 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE

HEAT STRESS

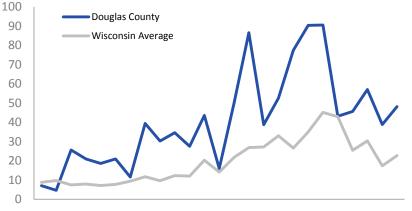
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

• 43.7 **ASTHMA** RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 16.8

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6

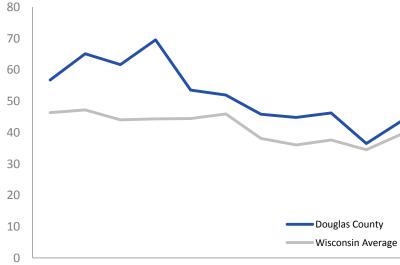
• 58.1

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1

34.9 HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

STATEWIDE: 27.4

Above state value At or below state value ^ Suppressed


ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

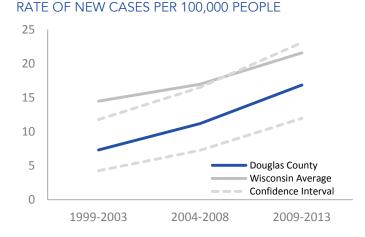
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our asthma disparities survillance brief, available in the resources section of our website.

ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 9

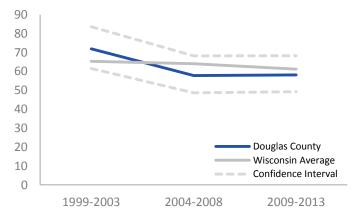
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.


Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

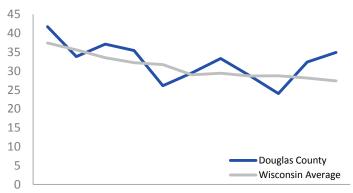
MELANOMA

NOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

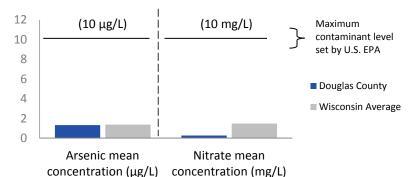
STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION P IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 99.0%
 FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY DOUGLAS COUNTY

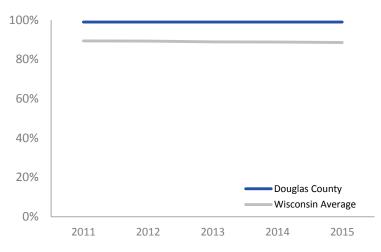
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

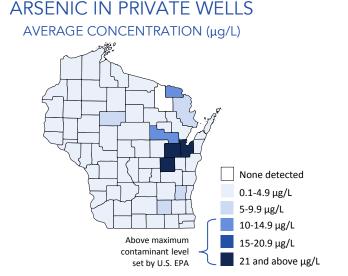

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

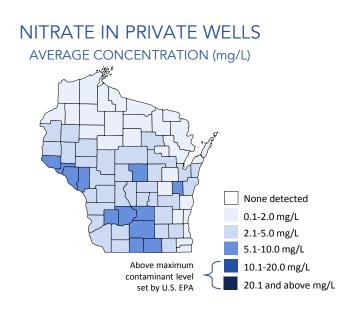
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



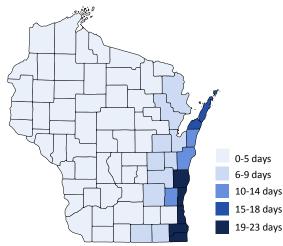

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

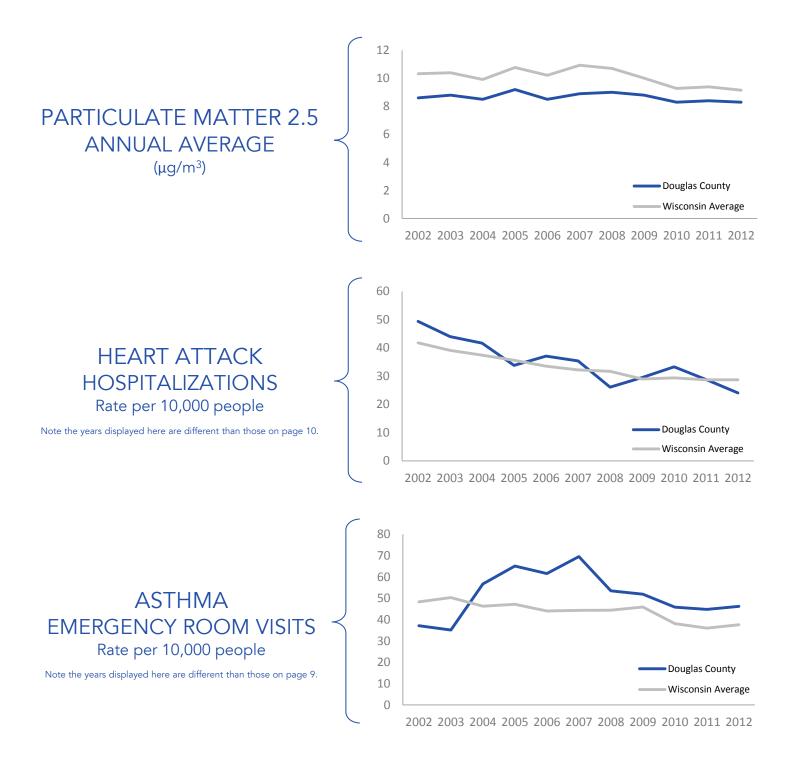
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **B.3 PARTICULATE MATTER 2.5** ANNUAL AVERAGE (μg/m³) STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

DUNN COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

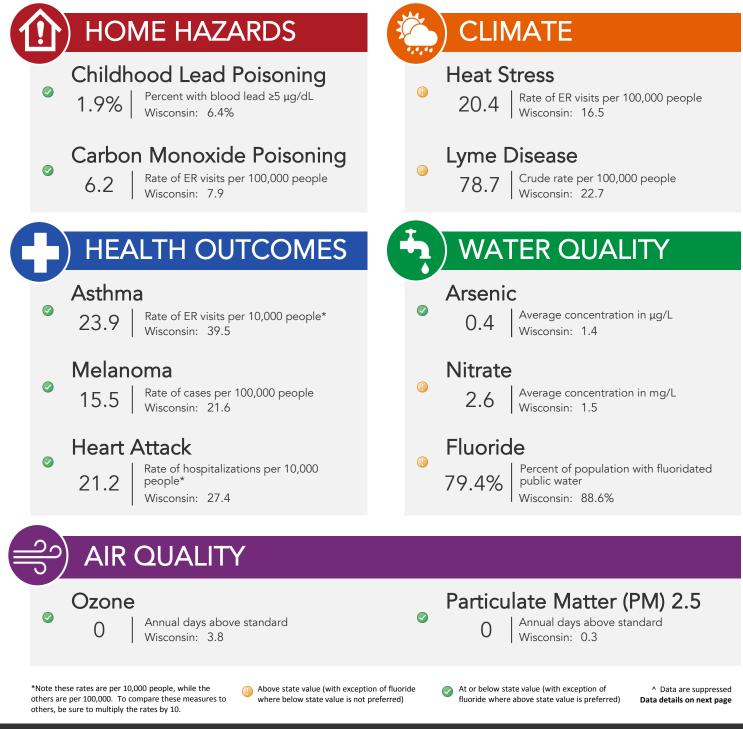
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS DUNN COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 6.2

CARBON MONOXIDE

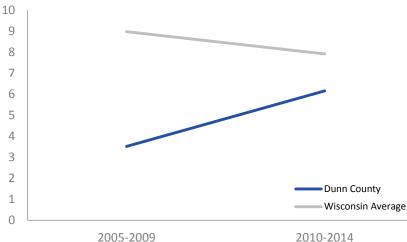
POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

• 1.9%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

^ Suppressed

Above state value

At or below state value

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

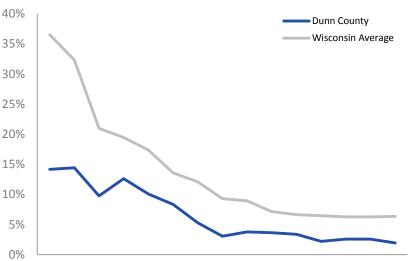
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

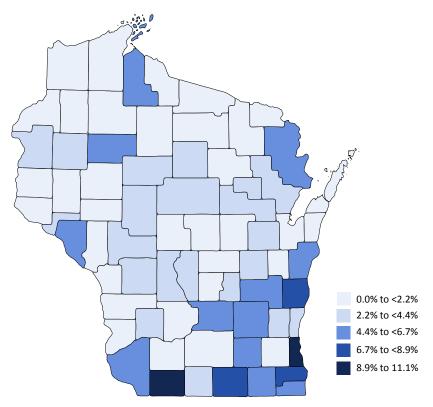
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

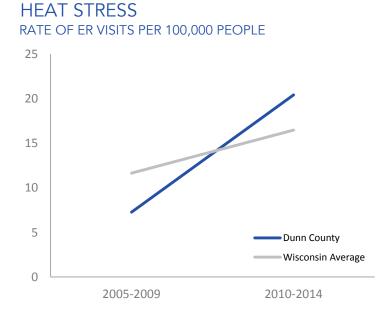
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ${\geq}5~\mu\text{g/dL}$ 2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

Output: State of ervisits per 100,000 people STATEWIDE: 16.5 • 78.7 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

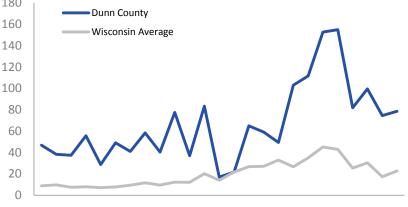
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infectedRAblack-legged tick (*Ixodes scapularis*) and is becoming180more common in Wisconsin. Lyme disease was the160fourth highest reported notifiable communicable140disease in 2015.120

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

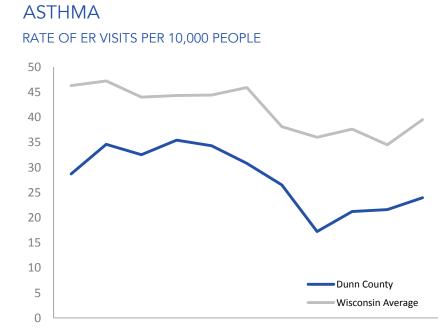
• 23.9 ASTHMA RATE OF ER VISITS

> PER 10,000 PEOPLE STATEWIDE: 39.5

• 15.5

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 45.4

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 21.2
 HEART ATTACK


RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

ASTHMA

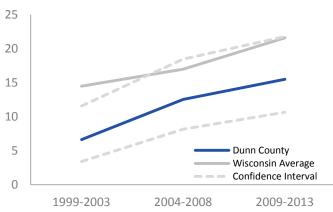
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

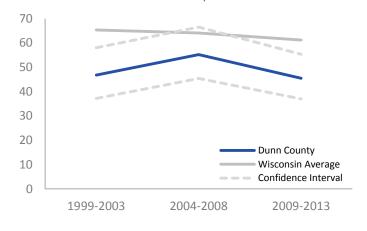
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

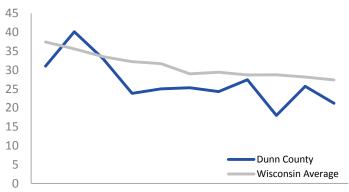

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ✓ U.4 ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

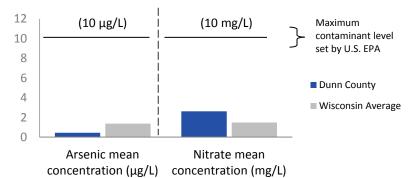
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

2.6 NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) • **79.4%** FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY DUNN COUNTY

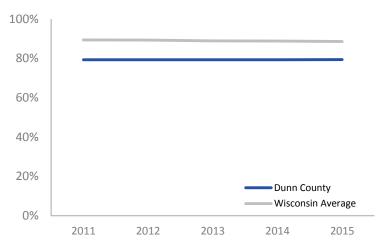
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

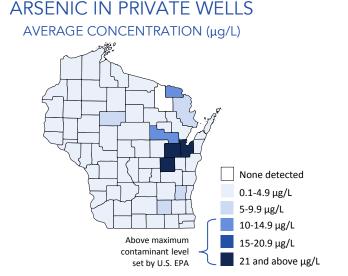

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

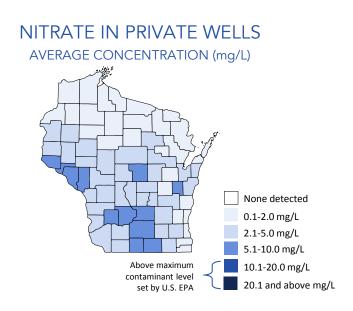
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER

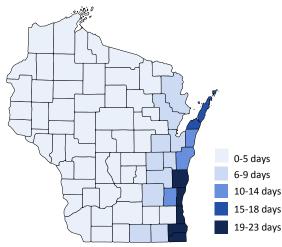



*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

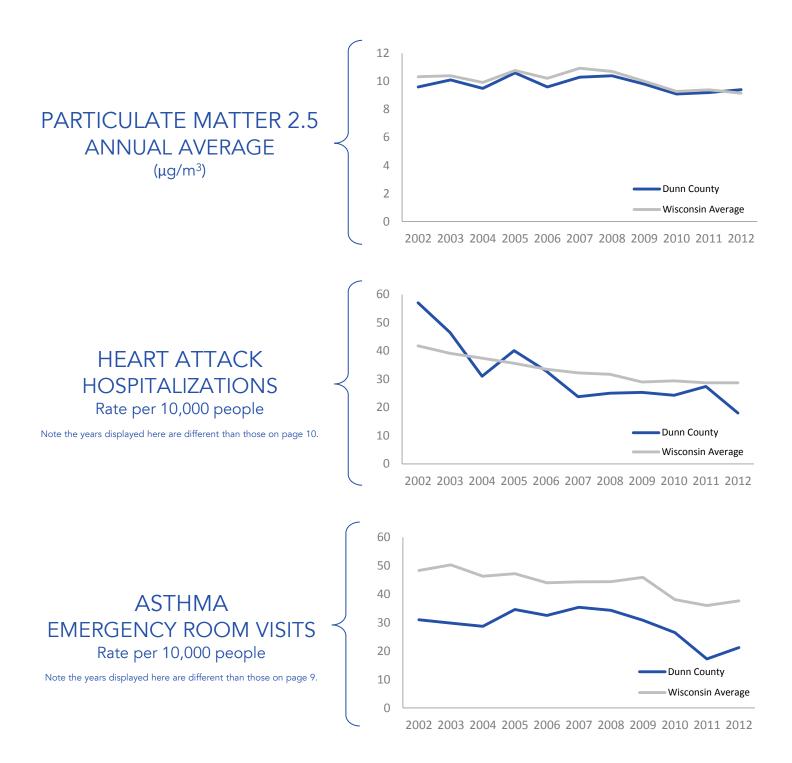
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **9.4 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

2017

EAU CLAIRE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

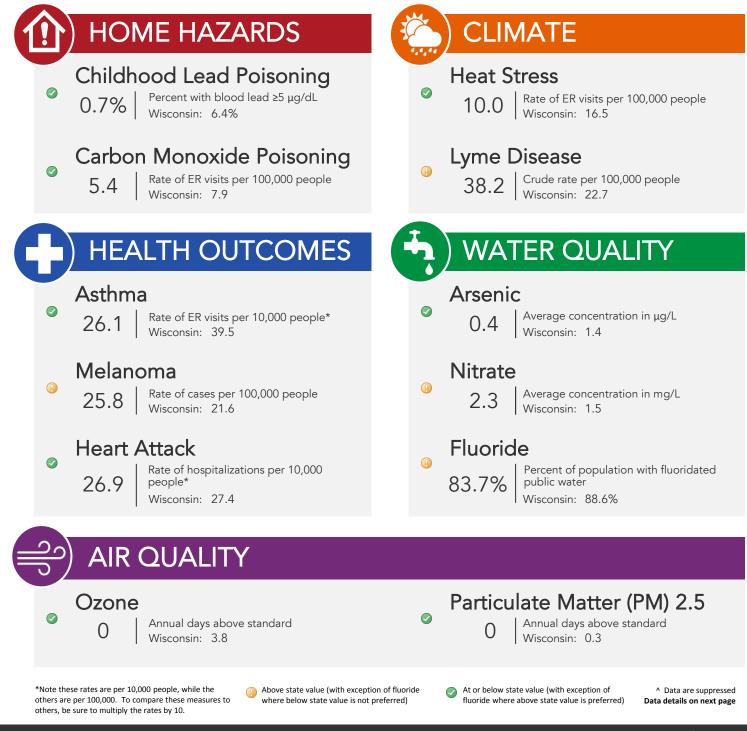
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

EAU CLAIRE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(HOME HAZARDS EAU CLAIRE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 5.4

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

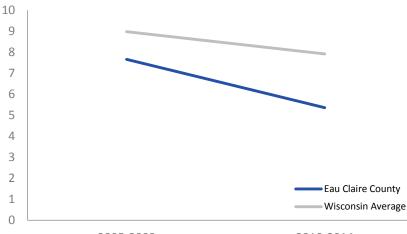
STATEWIDE: 7.9

• 0.7%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

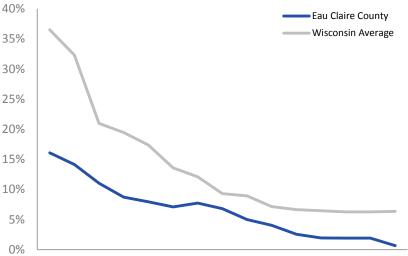
2010-2014

HOME HAZARDS EAU CLAIRE COUNTY

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

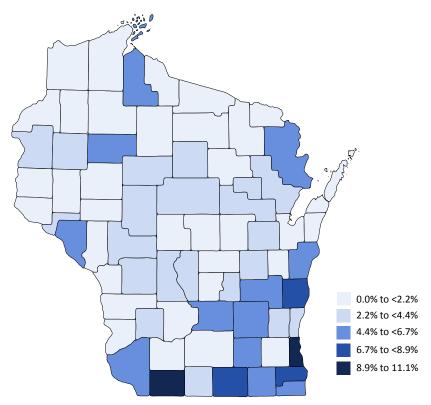
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD 25 µg/dL

2015 PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

I 10.0 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 B 38.2 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE

Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

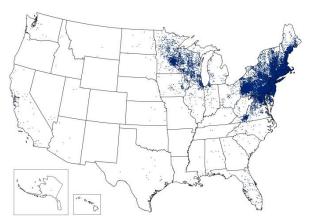
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

26.1
ASTHMA
RATE OF ER VISITS
PER 10,000 PEOPLE
STATEWIDE: 39.5

ASTHMA

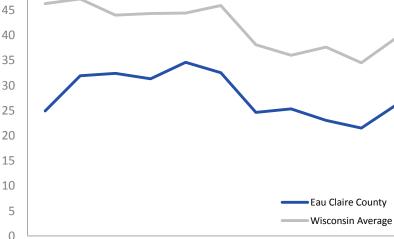
• 25.8

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 57.4

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 26.9
 HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

) Above state value 🛛 🧭 At or below state value 🔹 ^ Suppressed


ASTHMA

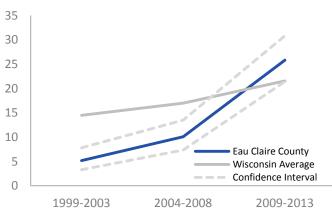
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

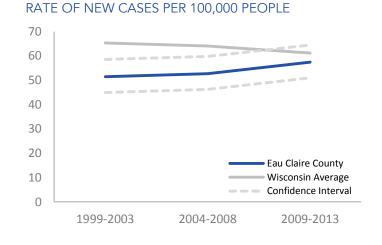
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

RATE OF ER VISITS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.


Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

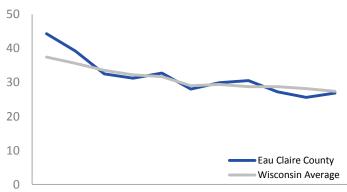
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK

A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.


A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

LUNG CANCER

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ✓ U.4 ARSENIC
> AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

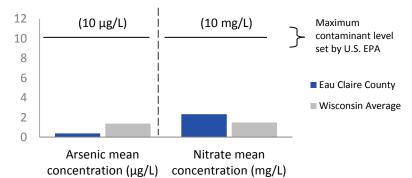
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

2.3 NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) B3.7% FLUORIDE PERCENT OF POPULATION WITH

FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY EAU CLAIRE COUNTY

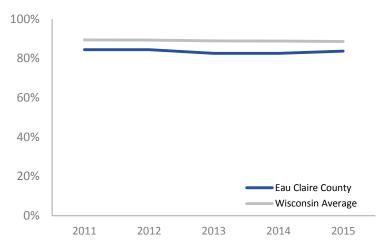
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

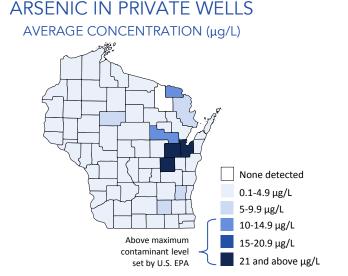

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

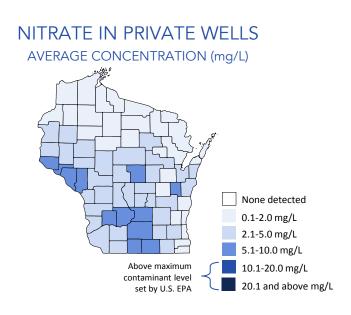
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER

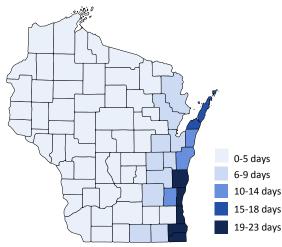



*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

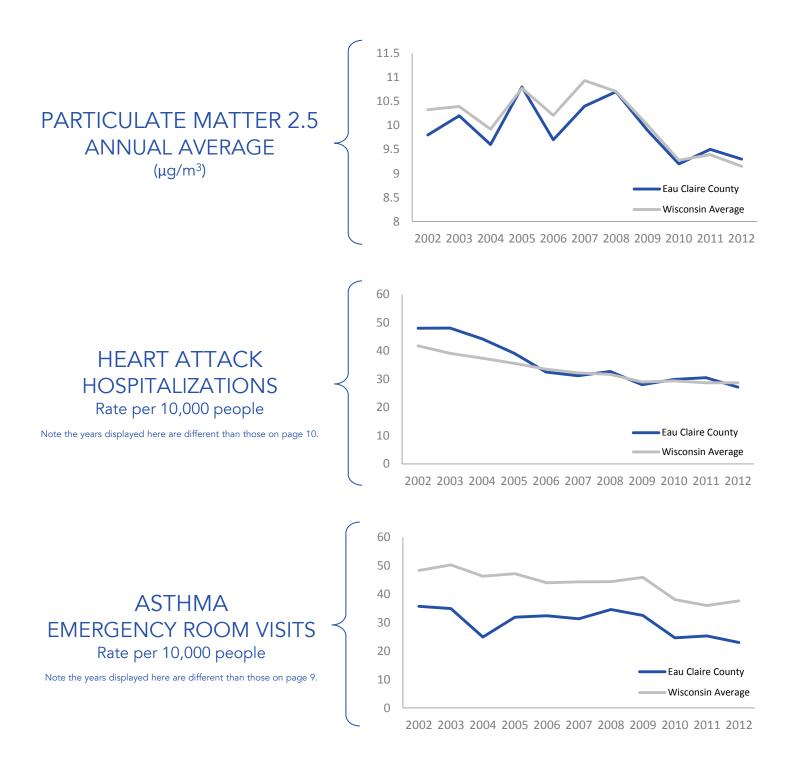
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **9.3 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

FLORENCE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

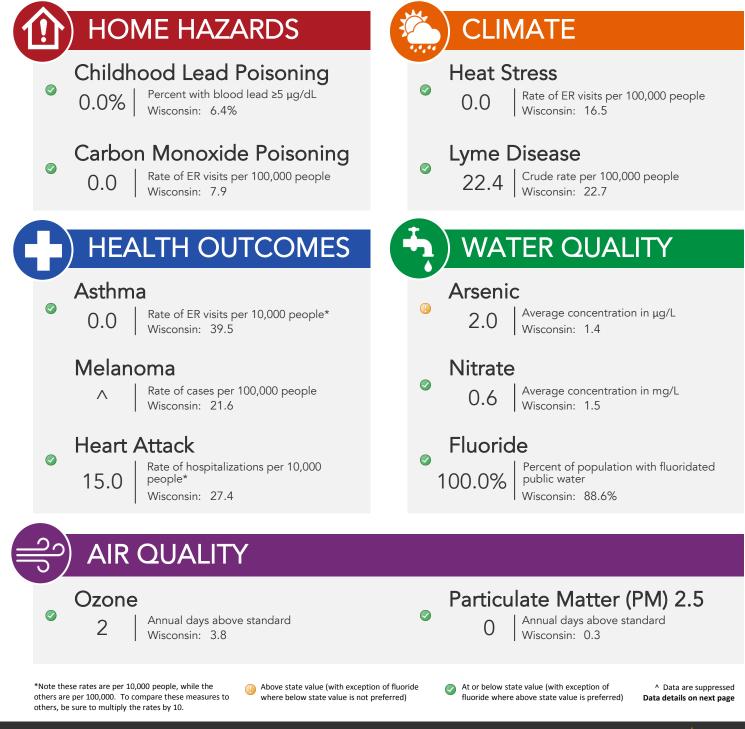
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

FLORENCE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

HOME HAZARDS FLORENCE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

0.0

CARBON MONOXIDE

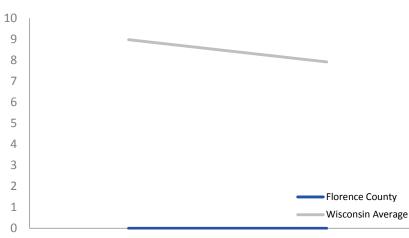
POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

0.0%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

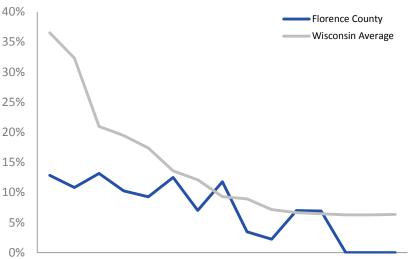
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

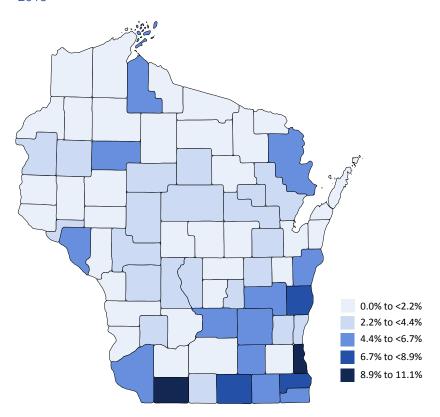
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL 2015

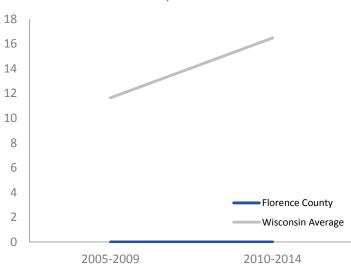
BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

O.O.
HEAT STRESS
RATE OF ER VISITS
PER 100,000 PEOPLE
STATEWIDE: 16.5


• 222.4 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

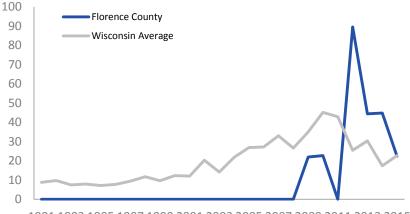
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

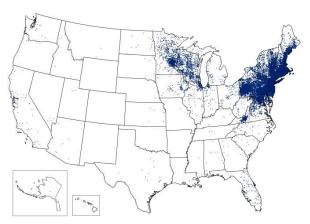
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

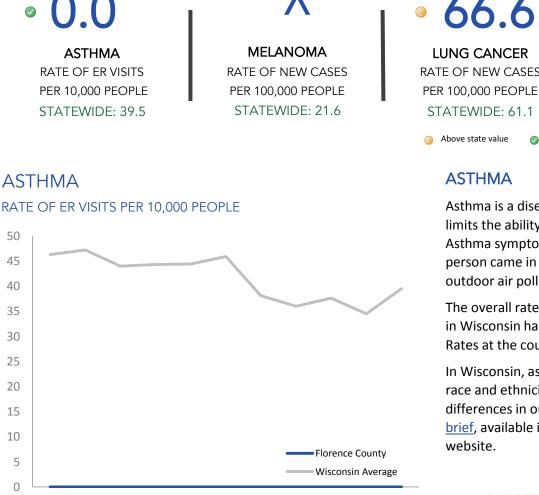
The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015


Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

66.6 LUNG CANCER RATE OF NEW CASES

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

15.0

Above state value At or below state value ^ Suppressed

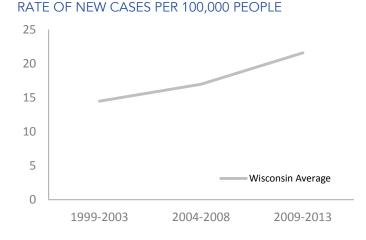
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

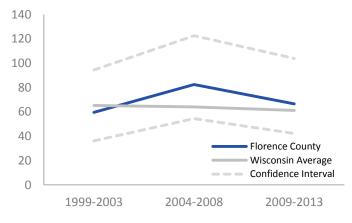
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our asthma disparities survillance brief, available in the resources section of our website.

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

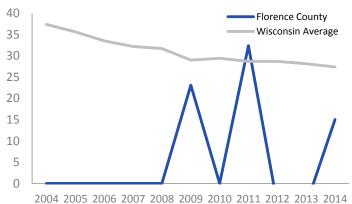
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (μg/L)

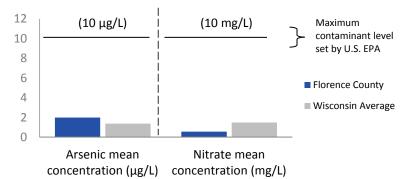
STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

• 0.6 NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 100.0%
FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY FLORENCE COUNTY

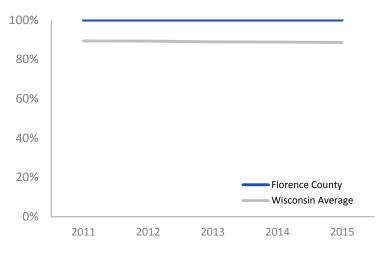
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

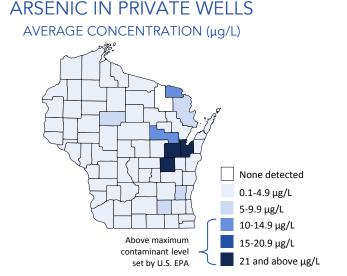

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

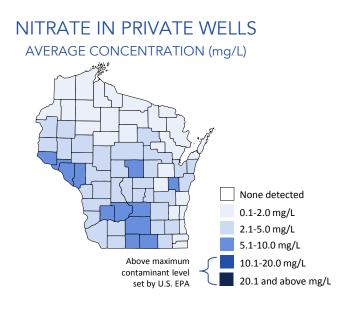
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

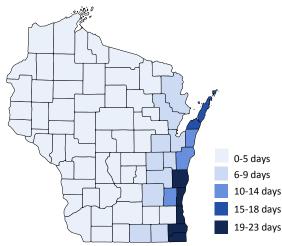
Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 ✓ 7.3
PARTICULATE MATTER 2.5 ANNUAL AVERAGE (µg/m³) STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE

The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

2017

FOND DU LAC COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

FOND DU LAC COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS FOND DU LAC COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 3.9

CARBON MONOXIDE POISONING

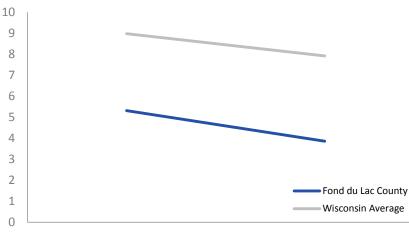
RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

• 6.2%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

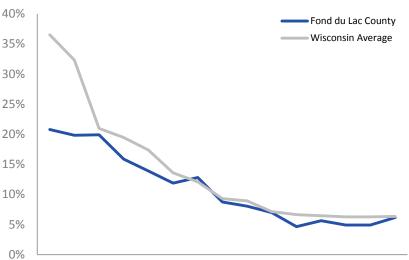
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

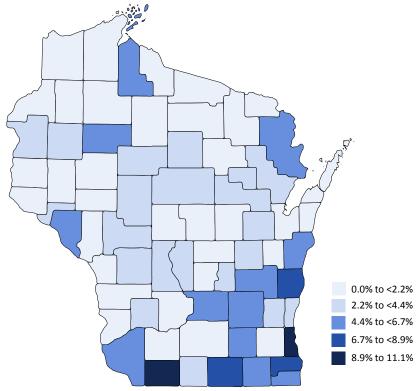
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

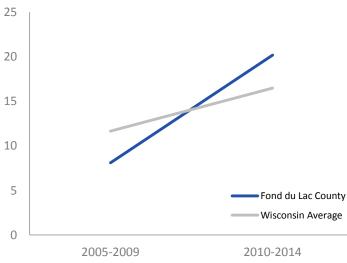
2015

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


20.2 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 8.8
LYME DISEASE
RATE OF CASES
PER 100,000 PEOPLE
STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

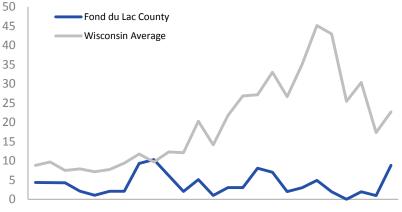
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

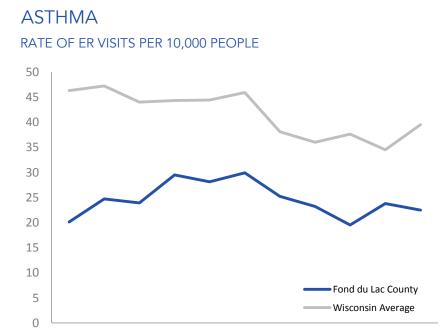
222.5 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 31.3

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 60.7

RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • 29.9

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value At or below state value Suppressed

ASTHMA

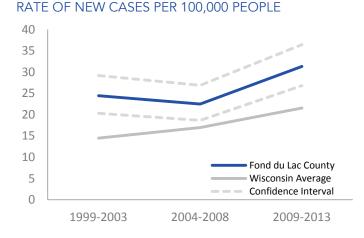
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

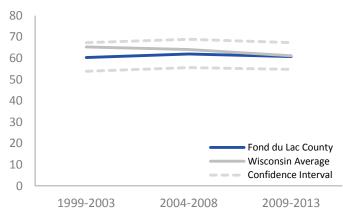
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.


Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

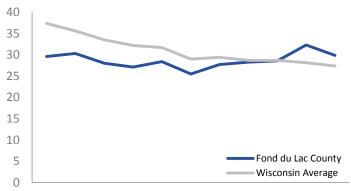
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

LUNG CANCER

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L) STATEWIDE: 1.5

At or below state value (with exception

of fluoride where above state value is

preferred)

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

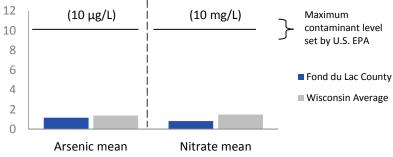
> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred)

high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.


> FLUORIDE PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

88.9%

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

concentration (μ g/L) concentration (mg/L)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. **Environmental Protection Agency.**

WATER QUALITY FOND DU LAC COUNTY

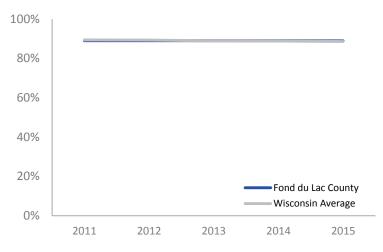
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

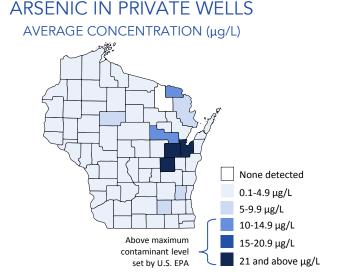

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

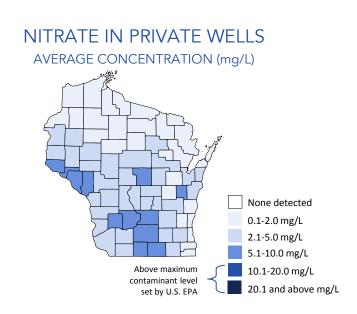
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



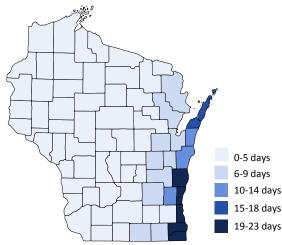

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

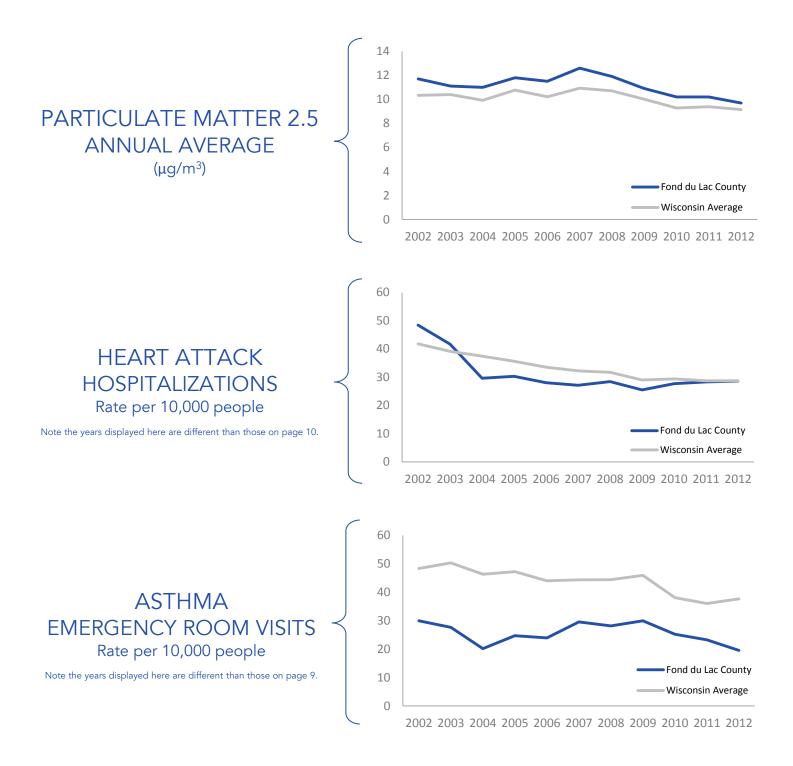
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **9.7 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

FOREST COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

FOREST COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health WISCONSIN

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS FOREST COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 9.0

CARBON MONOXIDE POISONING

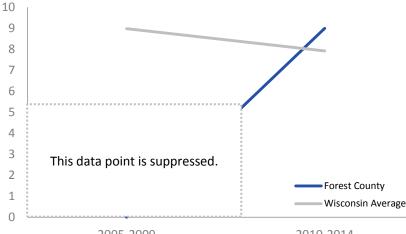
RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

• **2.1%**

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

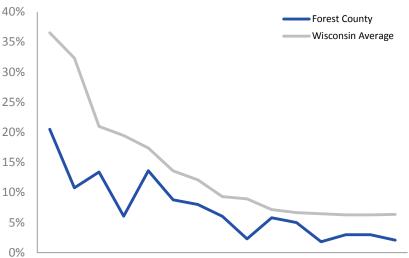
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

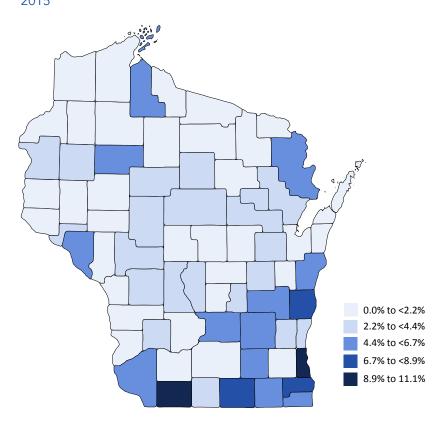
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

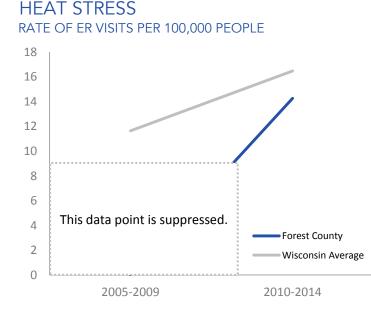
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL 2015

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

■ 14.3 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 55.2 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

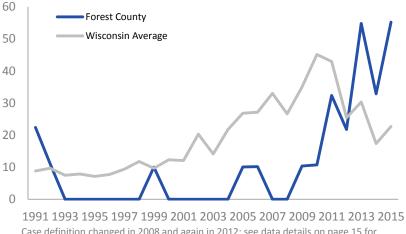
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

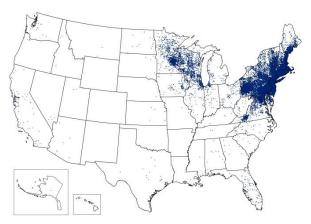
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

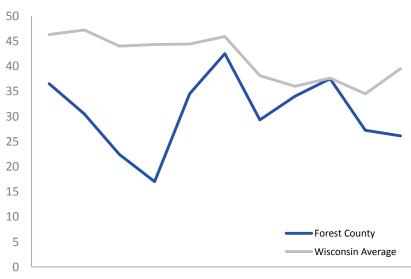
26.1
ASTHMA
RATE OF ER VISITS
PER 10,000 PEOPLE
STATEWIDE: 39.5

10.4

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 94.5

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 53.6
 HEART ATTACK
 RATE OF HOSPITALIZATIO

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

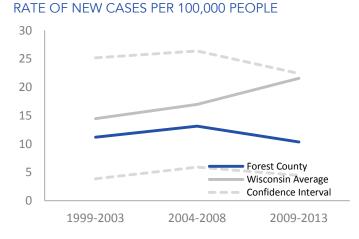
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE

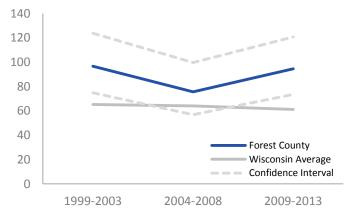
DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 9

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

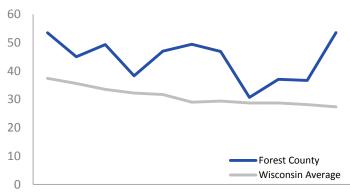

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L) STATEWIDE: 1.5

At or below state value (with exception

of fluoride where above state value is

preferred)

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

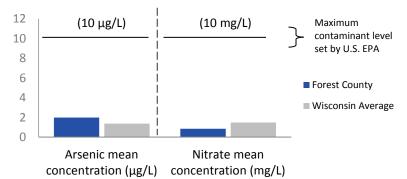
Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

ARSENIC
AVERAGE CONCENTRATION
IN PUBLIC WATER (μg/L)

STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.


> FLUORIDE PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

0.0%

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 11

WATER QUALITY FOREST COUNTY

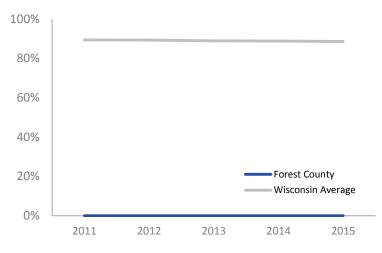
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

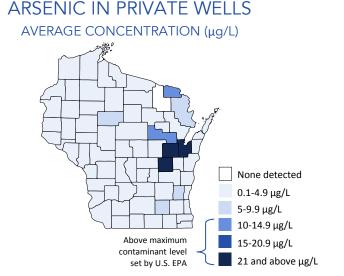

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

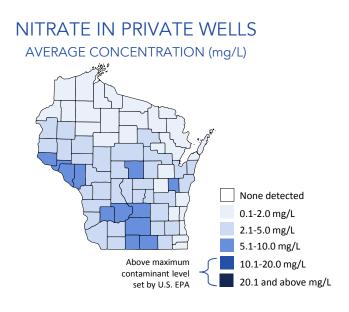
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



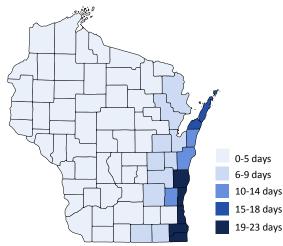

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

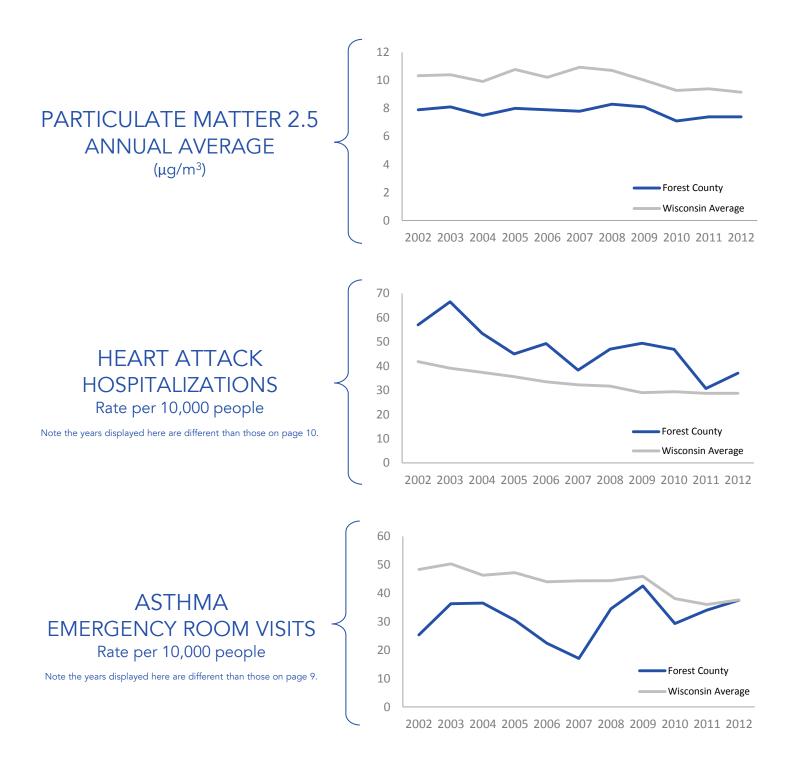
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 7.4
 PARTICULATE MATTER 2.5
 ANNUAL AVERAGE (µg/m³)
 STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

GRANT COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

GRANT COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(HOME HAZARDS GRANT COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

8.9

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

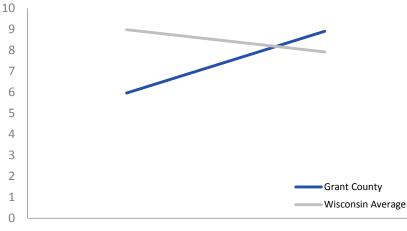
STATEWIDE: 7.9

• 4.6%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

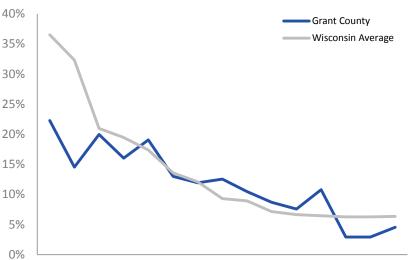
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

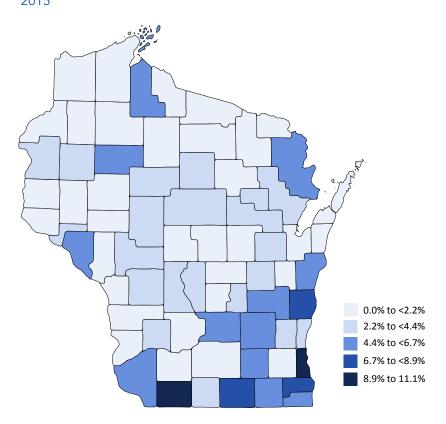
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

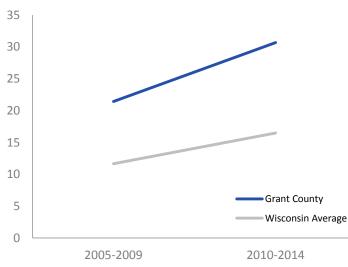
CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL 2015

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


Band Stress HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 28.7
LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

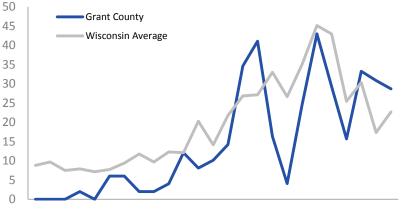
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

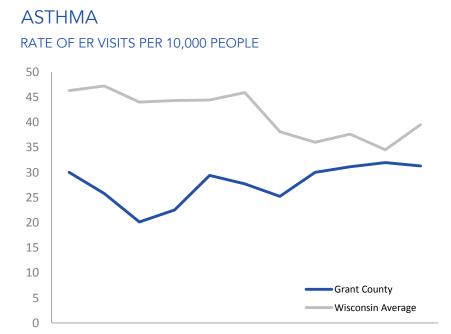
STATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

20.8

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • **51.5**

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 19.0
 HEART ATTACK
 RATE OF HOSPITALIZATIC

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value At or below state value Suppressed

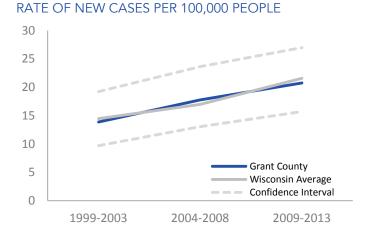
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

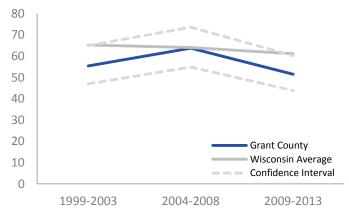
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

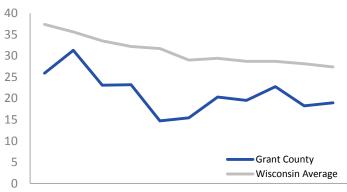

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L) STATEWIDE: 1.5

At or below state value (with exception

of fluoride where above state value is

preferred)

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

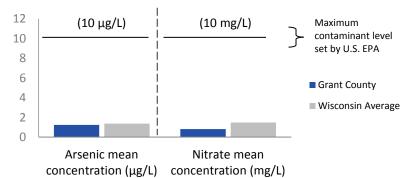
Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.


> FLUORIDE PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

87.5%

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY GRANT COUNTY

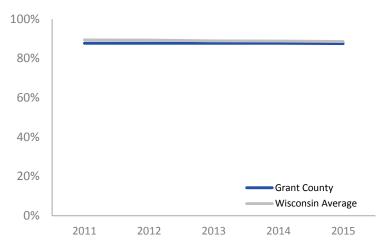
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

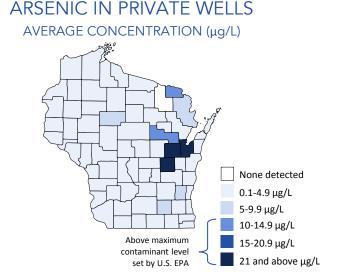

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

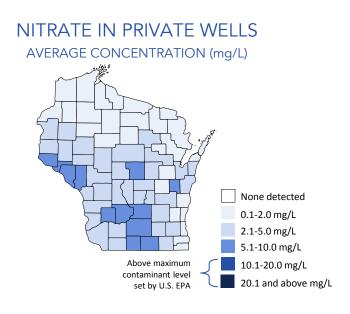
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



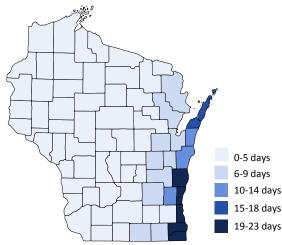

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

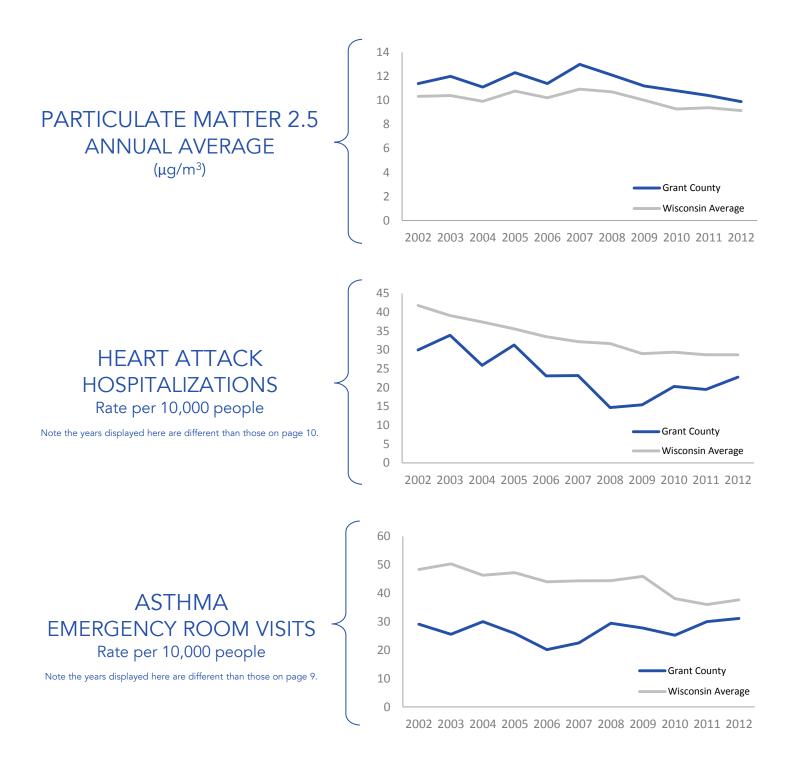
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 PARTICULATE MATTER 2.5 ANNUAL AVERAGE (µg/m³) STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

2017

GREEN LAKE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

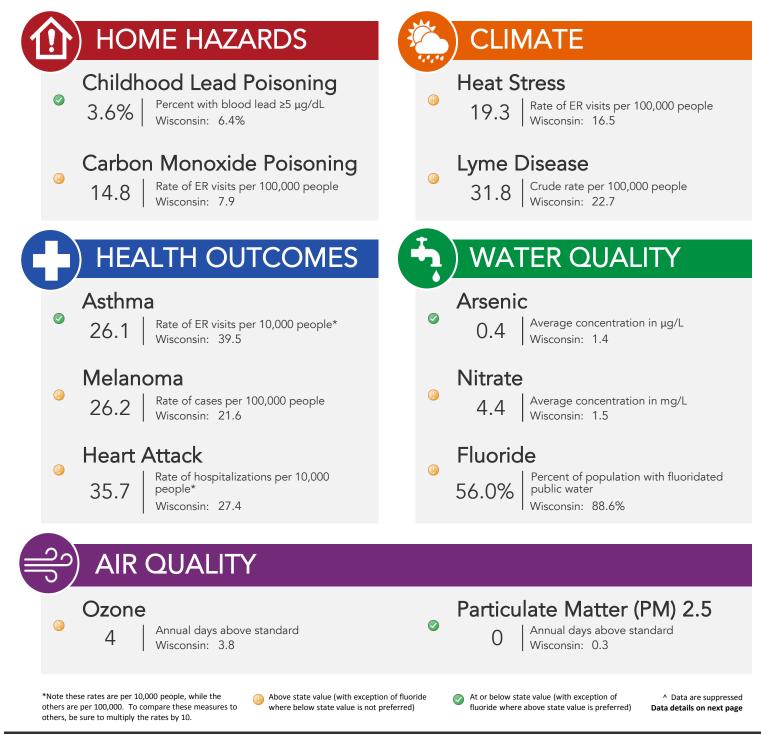
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

GREEN LAKE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS GREEN LAKE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 14.8

CARBON MONOXIDE

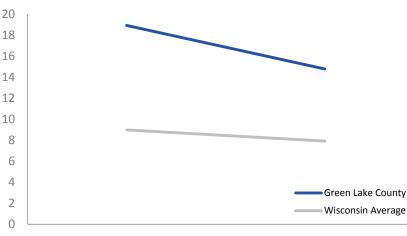
POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

• **3.6%**

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

^ Suppressed

Above state value

At or below state value

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

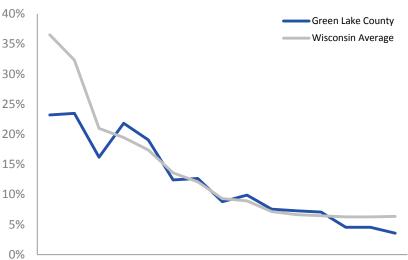
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

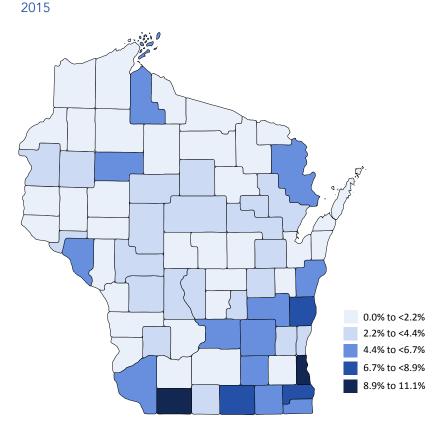
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

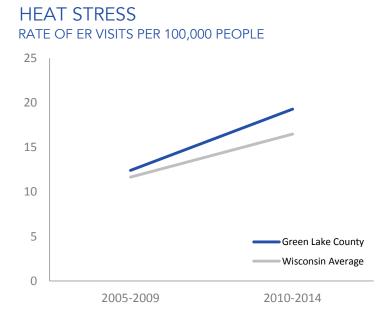
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

I 19.3 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 31.8
LYME DISEASE
RATE OF CASES
PER 100,000 PEOPLE
STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

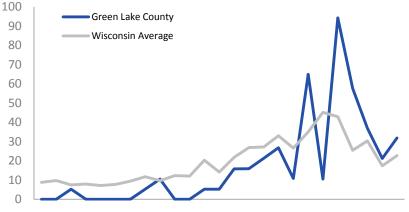
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

> Green Lake County Wisconsin Average

26.1 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

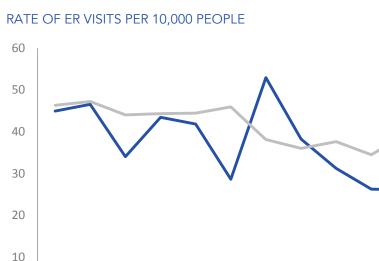
• 26.2

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6

• 53.7 LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1

35.7 HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value At or below state value ^ Suppressed

ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

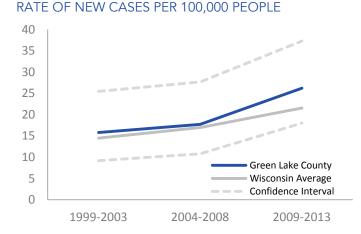
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our asthma disparities survillance brief, available in the resources section of our website.

ASTHMA

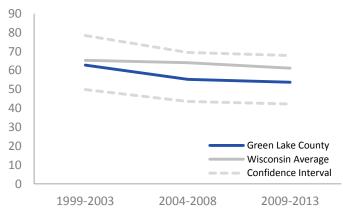
0

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

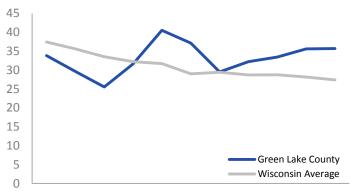

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

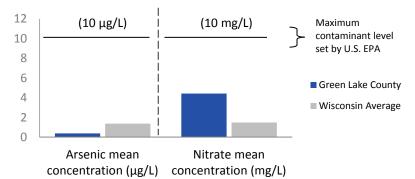
> ✓ U.4 ARSENIC
> AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)


STATEWIDE: 1.5

At or below state value (with exception of fluoride where above state value is preferred) 56.0%
FLUORIDE
PERCENT OF POPULATION WITH
FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY GREEN LAKE COUNTY

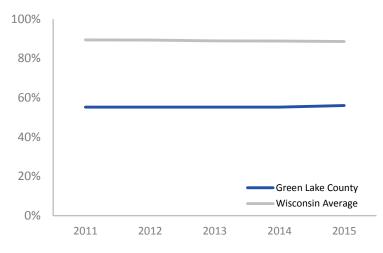
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

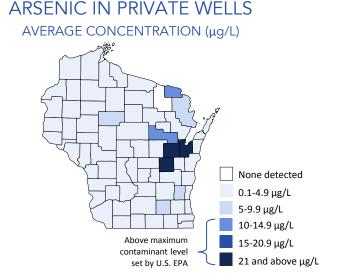

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

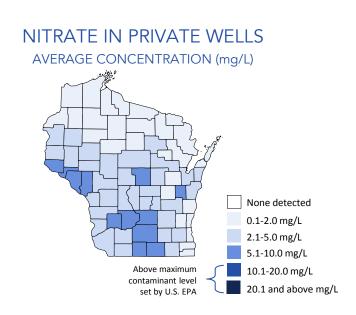
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



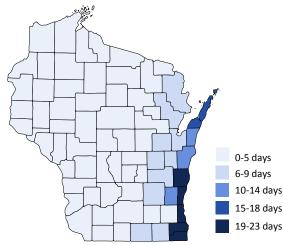

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

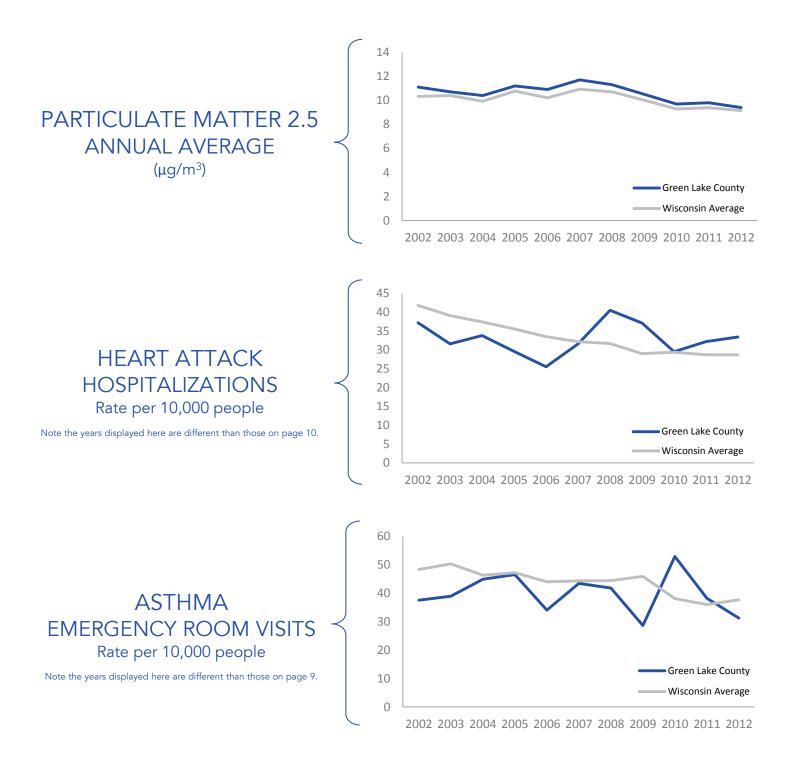
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **9.4 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

GREEN COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

GREEN COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS GREEN COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 5.3

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

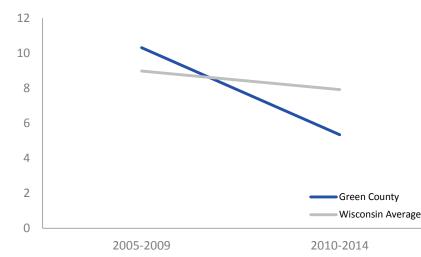
STATEWIDE: 7.9

• 3.7%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

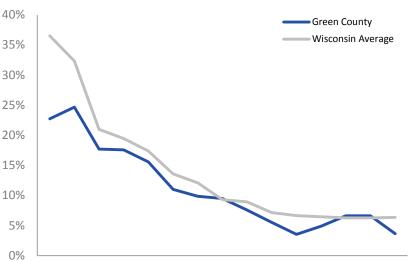
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

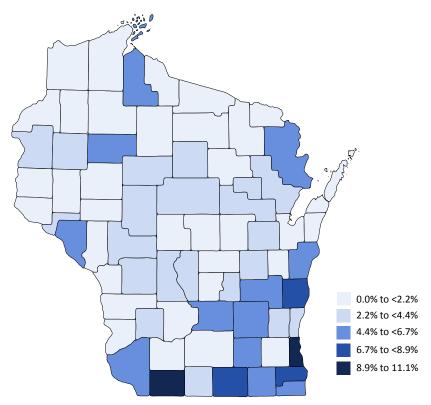
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD 25 µg/dL

2015 PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.


In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

I 19.3 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 Isometry 18.8
Isomet

Above state value

At or below state value ^ Suppressed

HEAT STRESS

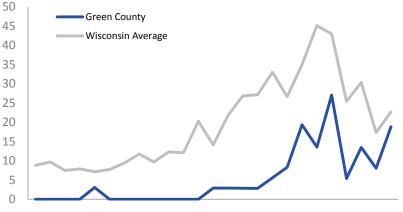
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

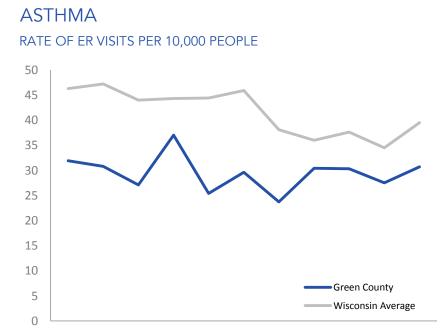
STATEWIDE: 39.5
STATEWIDE: 39.5

• 18.5

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 58.5

RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 26.0
 HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


O Above state value I At or below state value A Suppressed

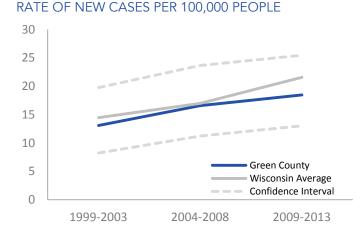
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

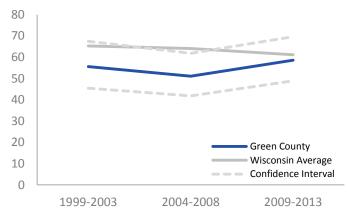
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

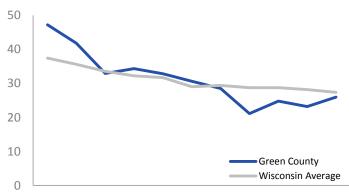

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

NITRATE

STATEWIDE: 1.5

preferred)

At or below state value (with exception

of fluoride where above state value is

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

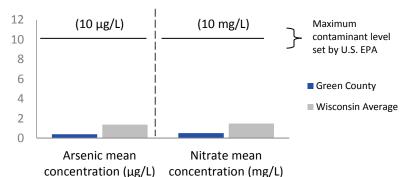
Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred)

high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.


Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

96.9% FLUORIDE AVERAGE CONCENTRATION PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER IN PUBLIC WATER (mg/L)

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. **Environmental Protection Agency.**

WATER QUALITY GREEN COUNTY

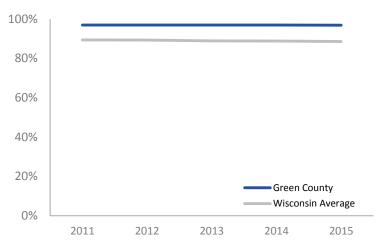
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

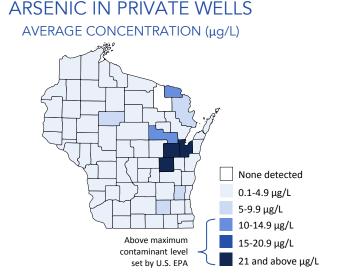

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

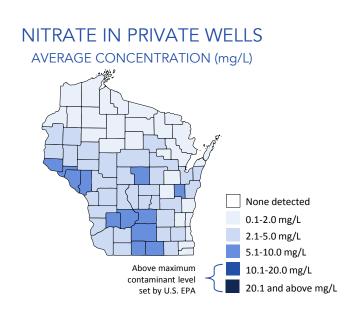
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

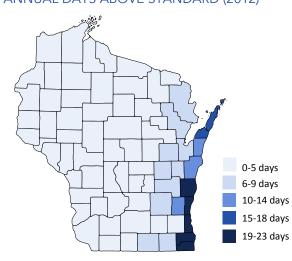
To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

OZONE

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 (PM_{2.5})" refers to the size of the particles, which are smaller than the width of a human hair.

Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.


OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

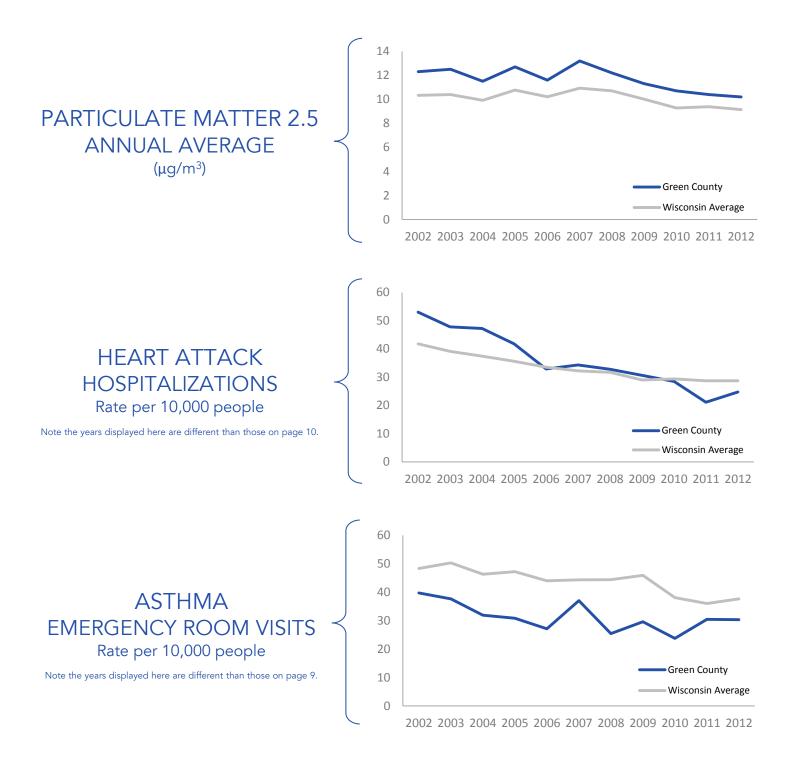
PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3

10.2 **PARTICULATE MATTER 2.5** ANNUAL AVERAGE (µg/m³) STATEWIDE: 9.1

At or below state value Above state value ^ Suppressed

ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

IOWA COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

IOWA COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov_| 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS IOWA COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 16.3

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

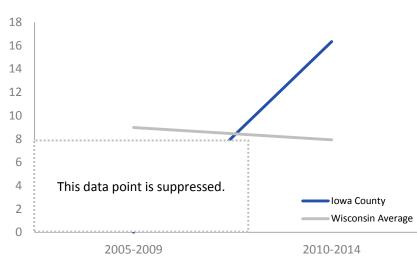
STATEWIDE: 7.9

• 0.0%

CHILDHOOD LEAD POISONING

 $\begin{array}{l} \mbox{PERCENT OF TESTED CHILDREN} \\ \mbox{WITH BLOOD LEAD} \geq 5 \ \mbox{\mug/dL} \end{array}$

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

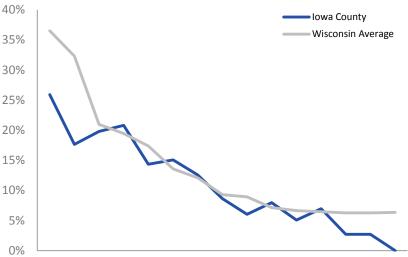
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

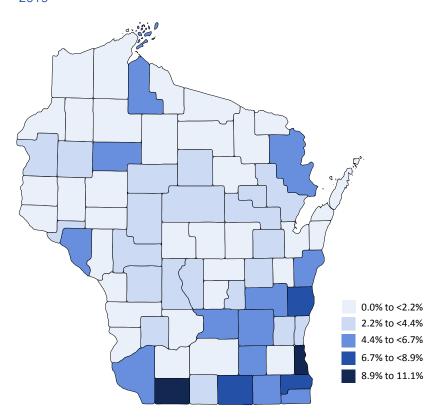
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL 2015

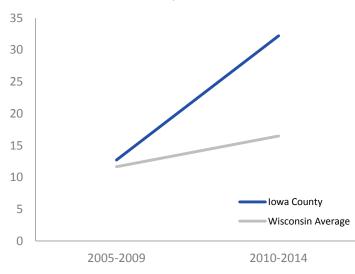
BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

32.2
 HEAT STRESS
 RATE OF ER VISITS
 PER 100,000 PEOPLE
 STATEWIDE: 16.5


29.4
LYME DISEASE
RATE OF CASES
PER 100,000 PEOPLE
STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

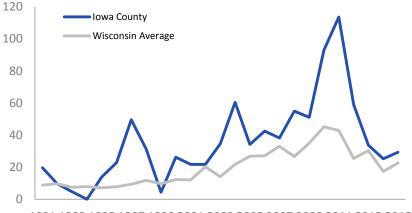
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

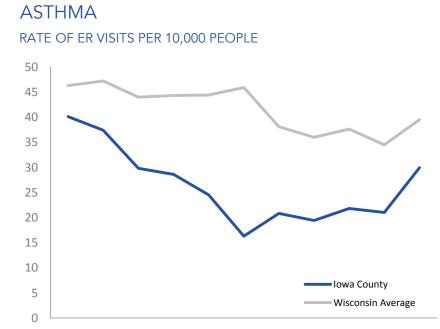
29.9 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 22.8

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 56.0

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • 28.9

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value At or below state value Suppressed

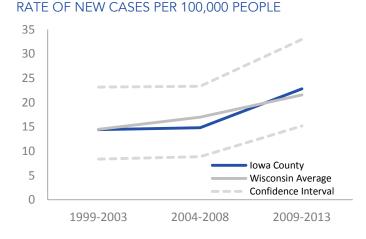
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

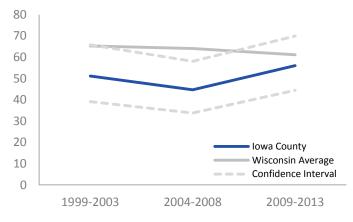
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L) STATEWIDE: 1.5

At or below state value (with exception

of fluoride where above state value is

preferred)

BACKGROUND

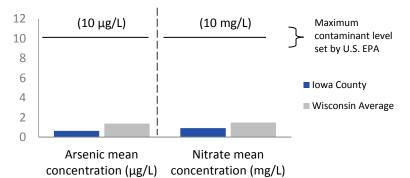
Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> CONCENTRATION ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (μg/L)

STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.


Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

> 73.3% FLUORIDE PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

> > STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY IOWA COUNTY

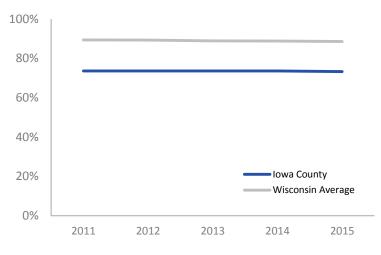
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

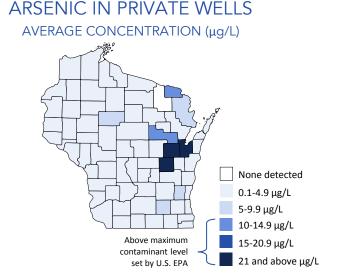

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

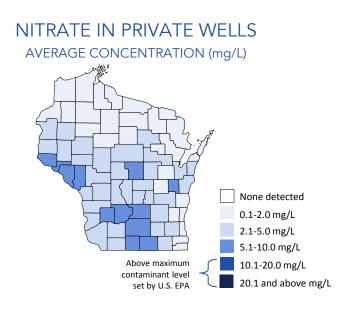
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

OZONE

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

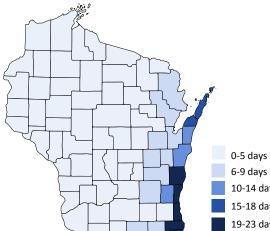
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **9.7 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

4 Above state value At or below state value Suppressed

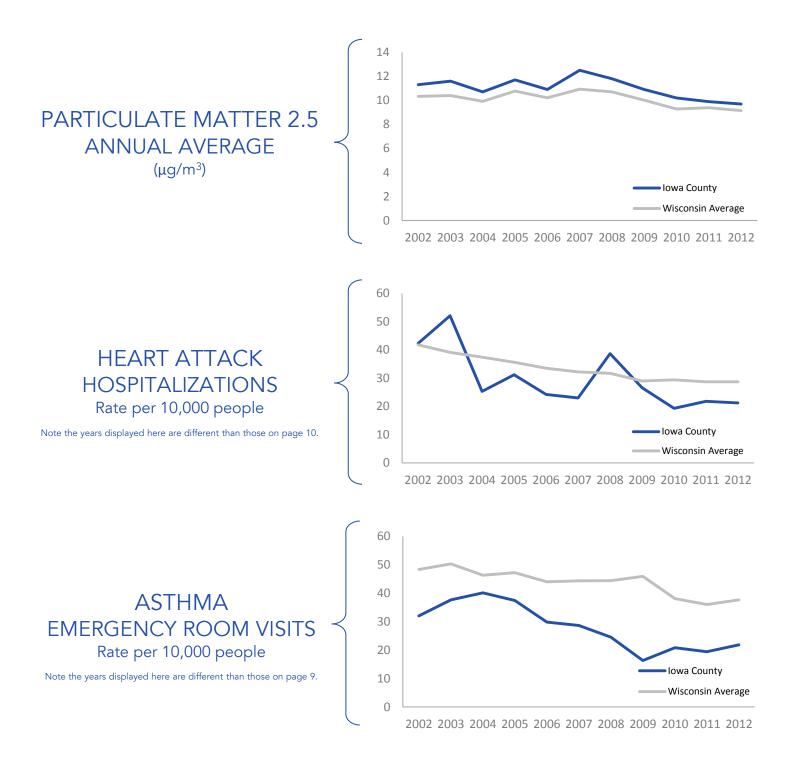
OZONE

The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.


Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

e. Counties without monitoring stations ha


6-9 days 10-14 days 15-18 days 19-23 days Wisconsir

ANNUAL DAYS ABOVE STANDARD (2012) The map to the left which ozone was at

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

2017

IRON COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

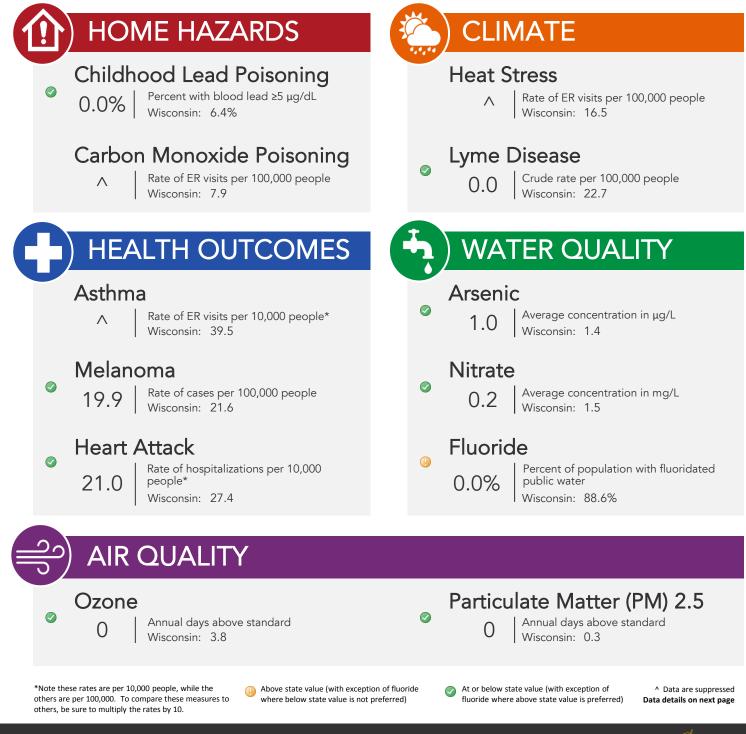
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014; Note: Iron County suppressed even after aggregating 10 years of data.

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014; Note: Iron County suppressed even after aggregating 10 years of data.

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS IRON COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 0.0%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

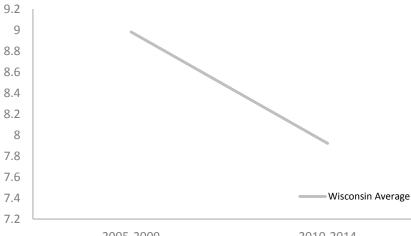
STATEWIDE: 6.4%

Above state value

CARBON MONOXIDE

POISONING

RATE OF ER VISITS


RELATED TO CO PER 100,000

STATEWIDE: 7.9

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

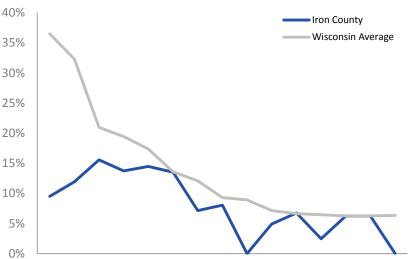
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

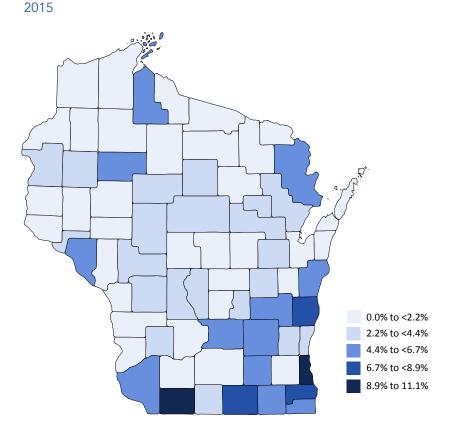
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

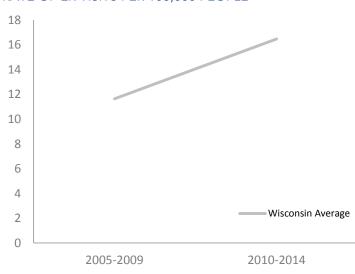
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

$\begin{array}{l} \mbox{CHILDHOOD LEAD POISONING} \\ \mbox{percent of tested children with blood lead} \geq 5 \ \mu g/dL \end{array}$

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 O.O
LYME DISEASE
RATE OF CASES
PER 100,000 PEOPLE
STATEWIDE: 22.7

Above state value

At or below state value ^ Suppressed

HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE

HEAT STRESS

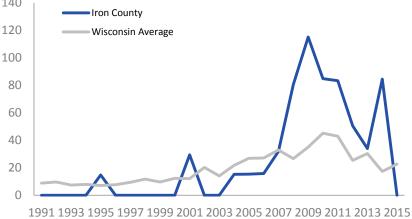
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infectedRAblack-legged tick (*Ixodes scapularis*) and is becoming140more common in Wisconsin. Lyme disease was the
fourth highest reported notifiable communicable120disease in 2015.100

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

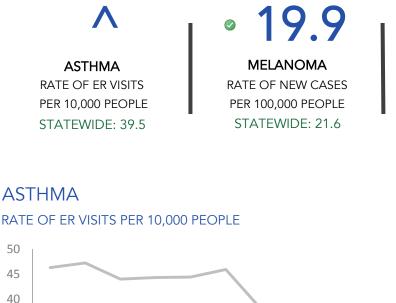
The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015


Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

• 79.3

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1

21.0 HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

Above state value At or below state value ^ Suppressed

ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

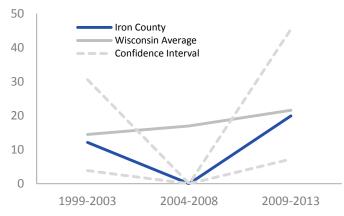
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our asthma disparities survillance brief, available in the resources section of our website.

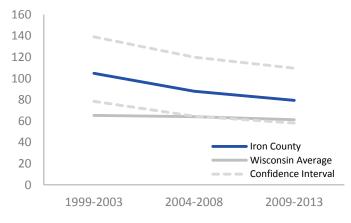
50 45 40 35 30 25 20 15 10 Iron County 5 Wisconsin Average 0 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.


Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

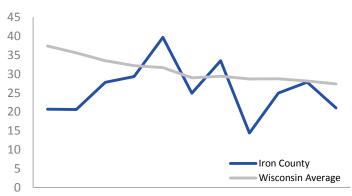
The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.


Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE


HEART ATTACK

A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred)

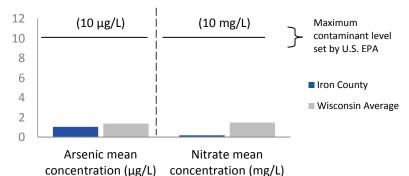
high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

0.0% NITRATE AVERAGE CONCENTRATION PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5

preferred)


At or below state value (with exception

of fluoride where above state value is

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. **Environmental Protection Agency.**

FLUORIDE

WATER QUALITY IRON COUNTY

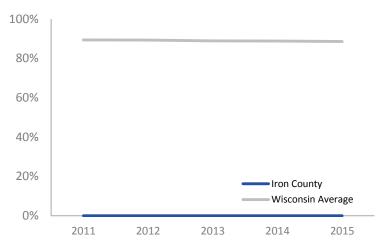
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

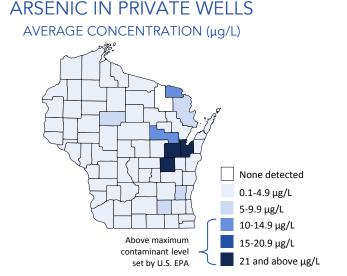

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

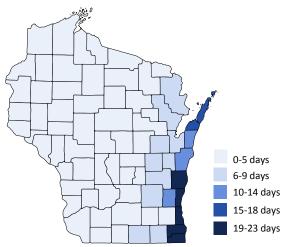
Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

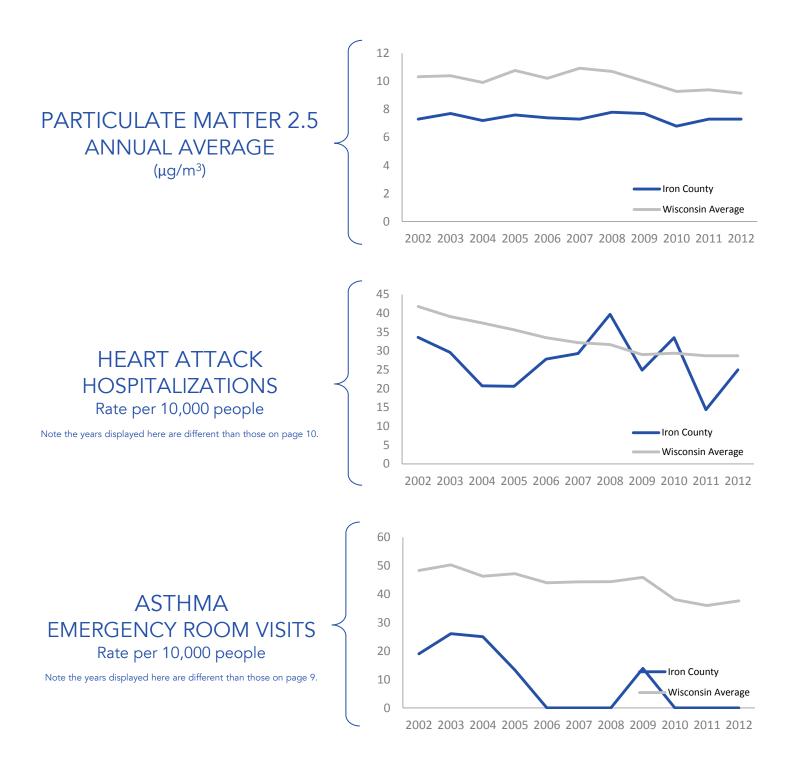
PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 ✓ 7.3
PARTICULATE MATTER 2.5 ANNUAL AVERAGE (µg/m³) STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed


OZONE

The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*


*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level $\geq 5 \ \mu g/dL$

Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 ,E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population. Note: Iron County suppressed even after aggregating 10 years of data.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population. Note: Iron County suppressed even after aggregating 10 years of data.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

JACKSON COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

JACKSON COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS JACKSON COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 25.5

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

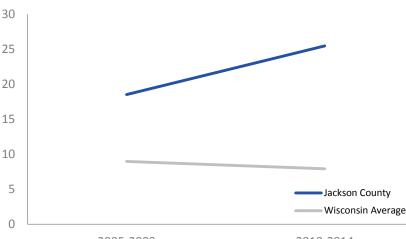
STATEWIDE: 7.9

• 2.9%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

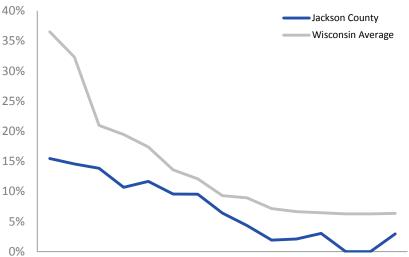
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

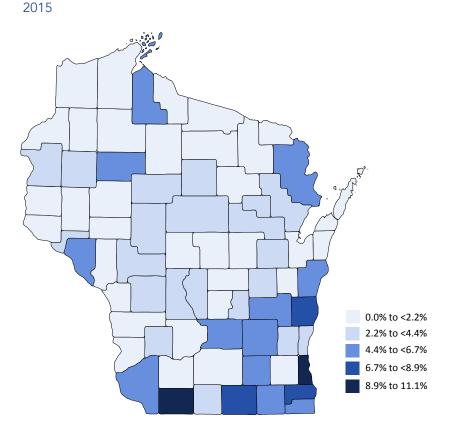
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

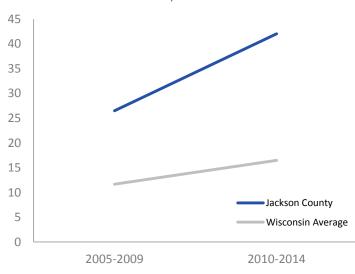
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5 \ \mu g/dL$

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


• 42.0 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 24.3 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

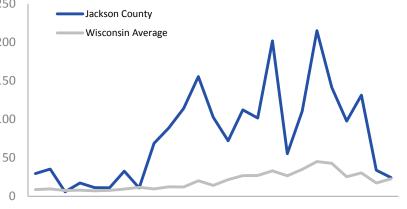
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infectedRAblack-legged tick (*Ixodes scapularis*) and is becoming250more common in Wisconsin. Lyme disease was the200fourth highest reported notifiable communicable200disease in 2015.200

The highest number of cases are typically reported ¹⁵⁰ in the northwestern region of Wisconsin, but in recent years cases have increased in the central and ¹⁰⁰ eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

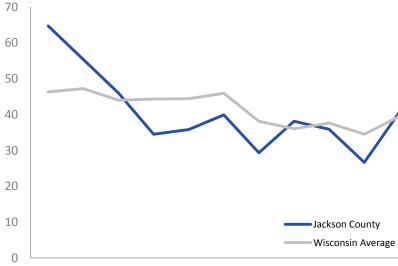
• **40.7** ASTHMA RATE OF ER VISITS

PER 10,000 PEOPLE STATEWIDE: 39.5

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 68.9

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • **28.3**

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

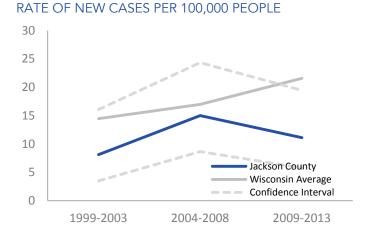
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE

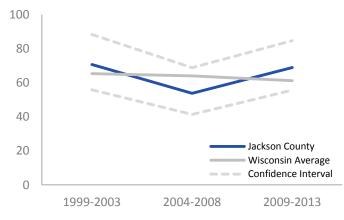
DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 9

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

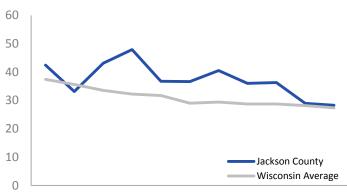
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

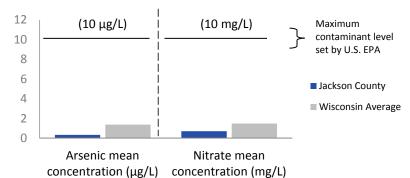
STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) • **40.5%** FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY JACKSON COUNTY

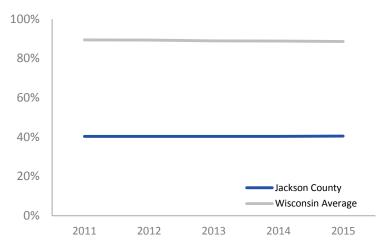
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

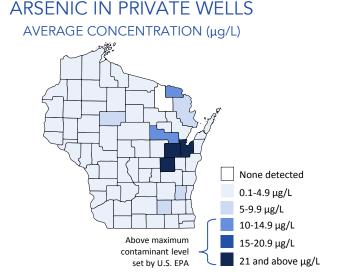

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

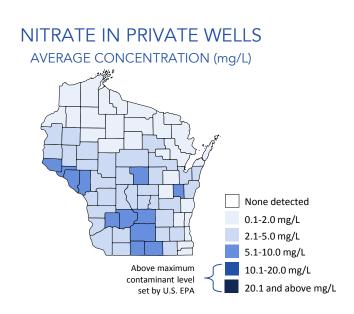
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER

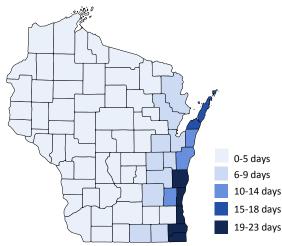



*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

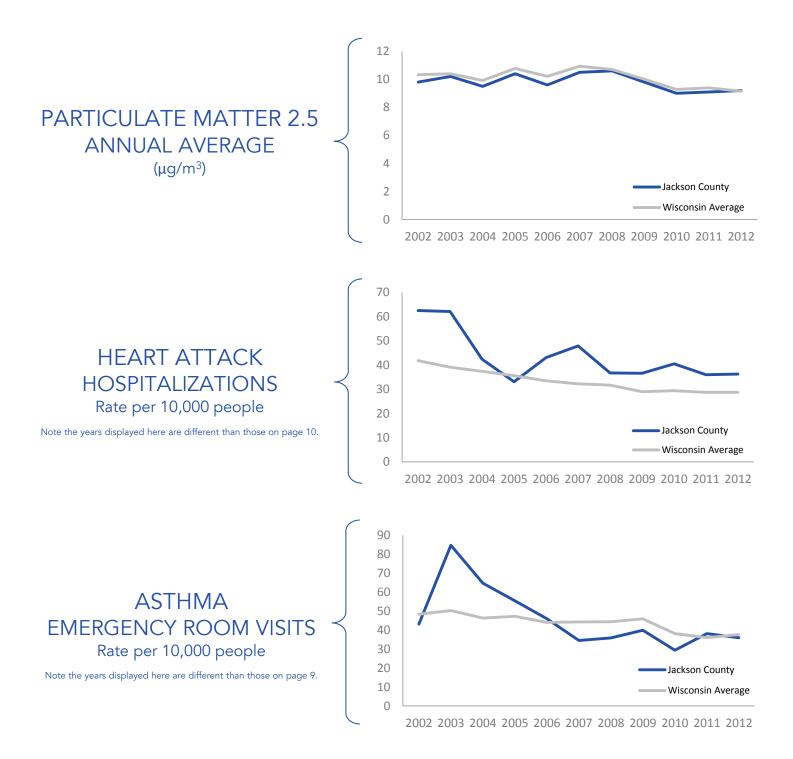
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 9.2
PARTICULATE MATTER 2.5
ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

JEFFERSON COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

JEFFERSON COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS JEFFERSON COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

8.1

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

• 4.7%

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN

WITH BLOOD LEAD $\geq 5 \ \mu g/dL$

STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

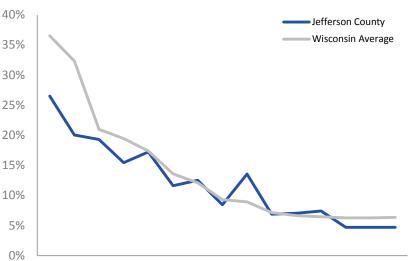
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

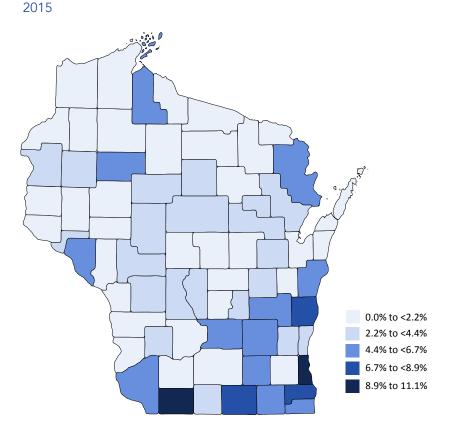
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

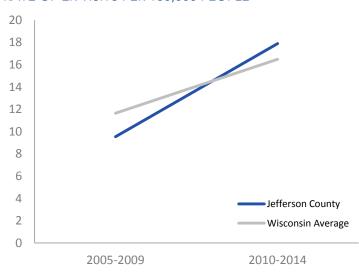
PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu\text{g/dL}$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

ITTESS HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 Above state value

At or below state value

^ Suppressed

HEAT STRESS

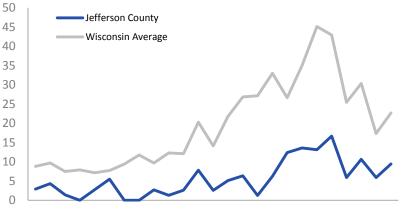
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

• <u>36.0</u> ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 17.7

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6

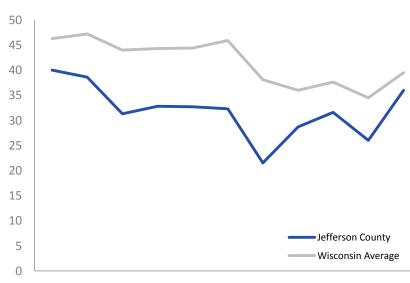
56.2

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1

24.0

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

Above state value At or below state value ^ Suppressed


ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

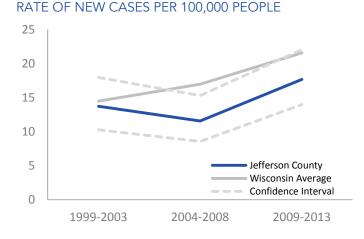
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our asthma disparities survillance brief, available in the resources section of our website.

ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 9

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

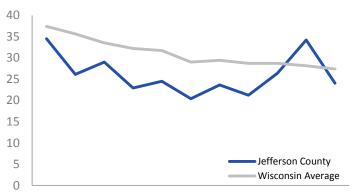

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> 2.5 ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

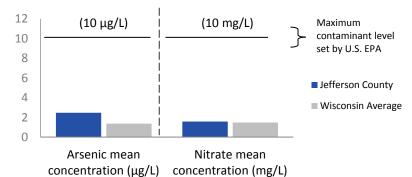
STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) • 91.5% FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY JEFFERSON COUNTY

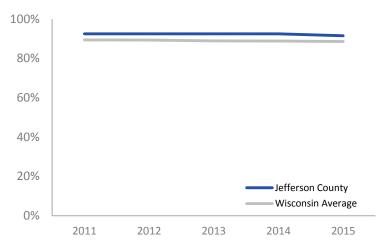
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

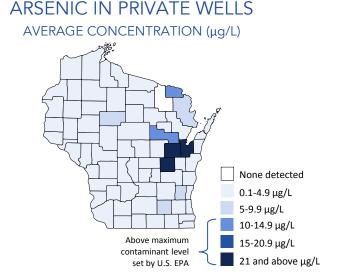

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

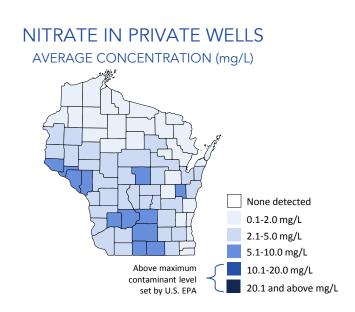
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



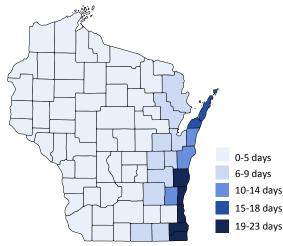

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

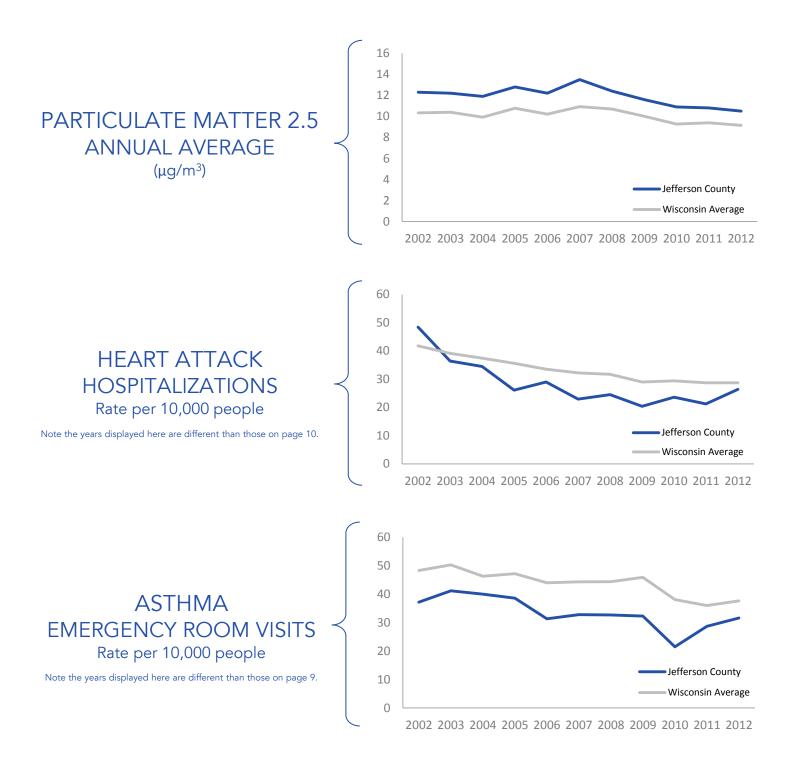
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **10.5 PARTICULATE MATTER 2.5** ANNUAL AVERAGE (μg/m³)
 STATEWIDE: 9.1

4 Above state value
At or below state value
Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

JUNEAU COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

JUNEAU COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS JUNEAU COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 13.3

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

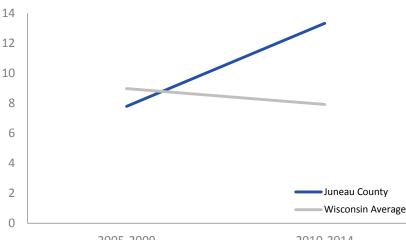
STATEWIDE: 7.9

• **2.6%**

CHILDHOOD LEAD POISONING

 $\begin{array}{l} \mbox{PERCENT OF TESTED CHILDREN} \\ \mbox{WITH BLOOD LEAD} \geq 5 \ \mbox{\mug/dL} \end{array}$

STATEWIDE: 6.4%


Above state value 🥥

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

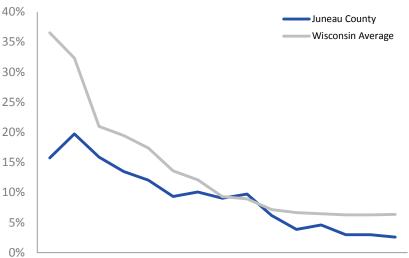
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

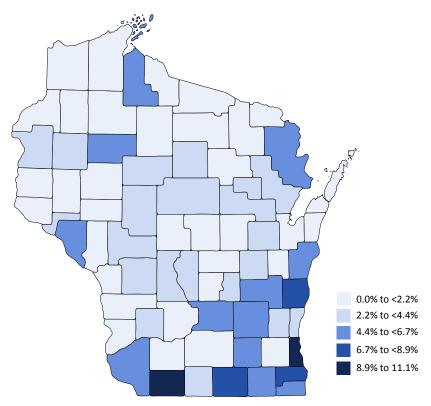
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

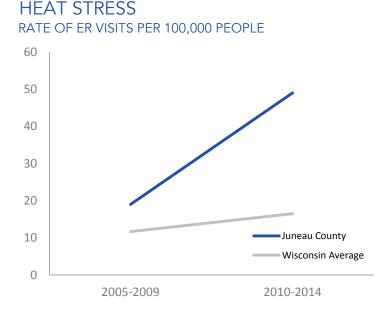
CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD 25 µg/dL

2015 PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 87.7
LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

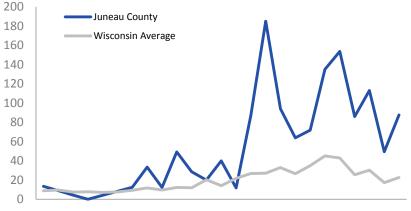
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

• 46.3 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

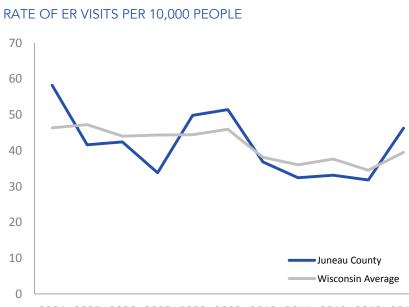
ASTHMA

• 17.7

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 67.4

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 35.4
 HEART ATTACK
 RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

STATEWIDE: 27.4


Above state value At or below state value Suppressed

ASTHMA

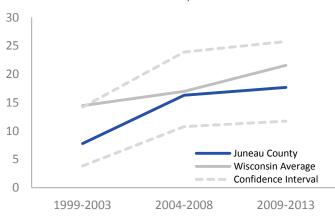
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

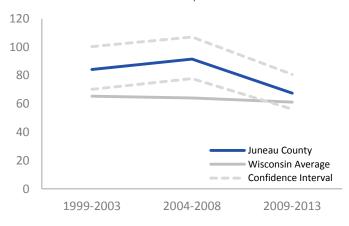
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.


Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

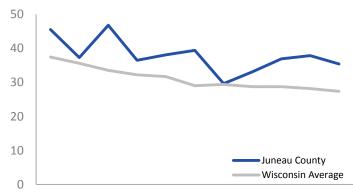
MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

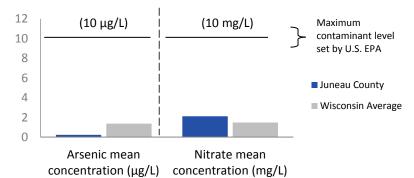
 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

2.1
 NITRATE

AVERAGE CONCENTRATION
IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) • **54.9%** FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY JUNEAU COUNTY

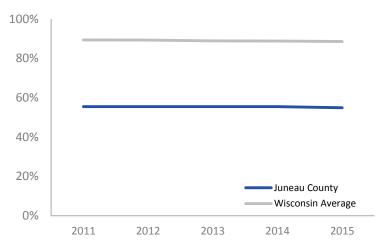
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

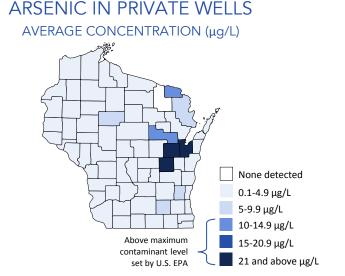

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

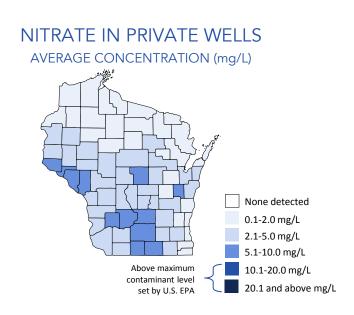
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

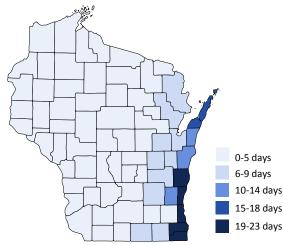
Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

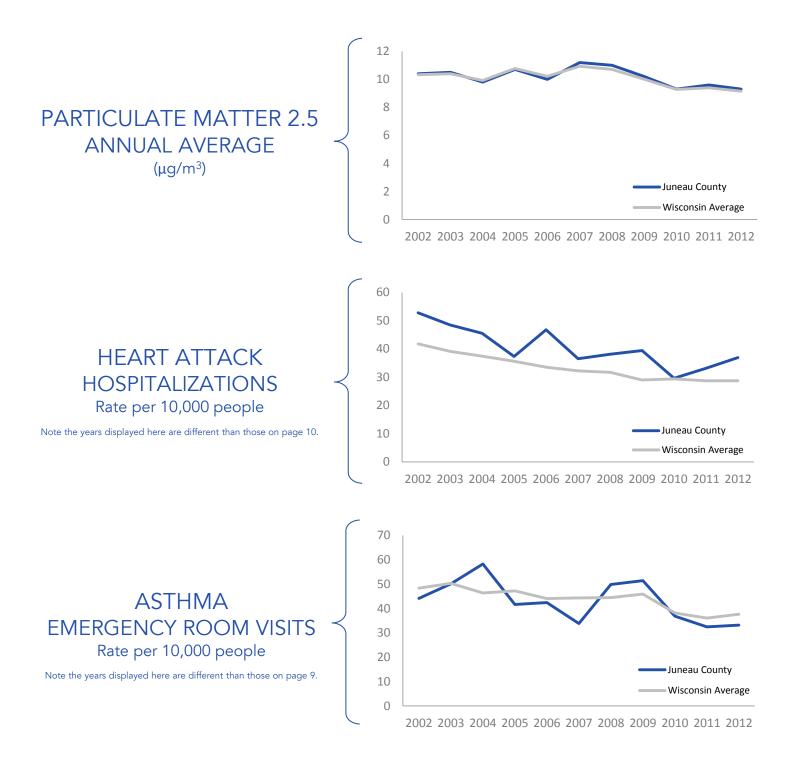
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **9.3 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

4 Above state value At or below state value Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

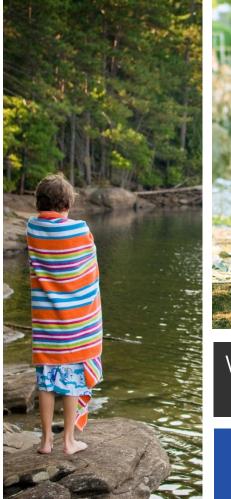
Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht


WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

KENOSHA COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

KENOSHA COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health WISCONSIN

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

HOME HAZARDS KENOSHA COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

3.9

CARBON MONOXIDE POISONING

RATE OF ER VISITS RELATED TO CO PER 100,000

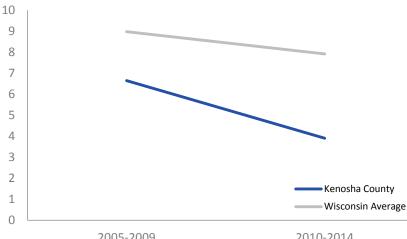
STATEWIDE: 7.9

5.3%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

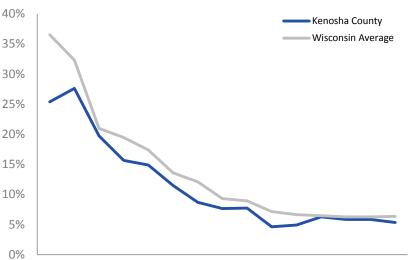
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

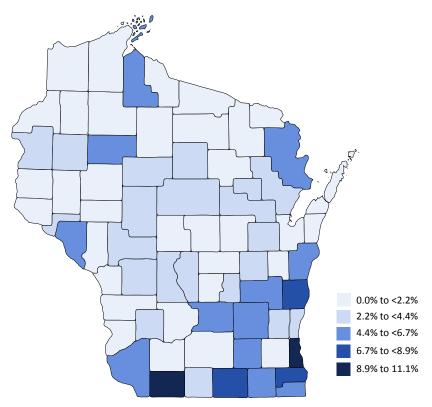
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING

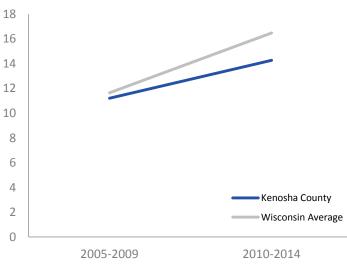
PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ${\geq}5~\mu\text{g/dL}$ 2015

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


• 14.3 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 STATE WIDE: 22.7
STATE WIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

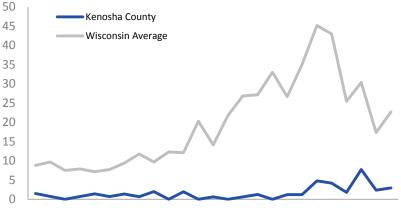
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

• **54.4 ASTHMA** RATE OF ER VISITS

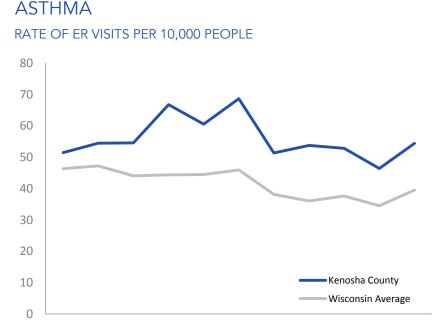
PER 10,000 PEOPLE STATEWIDE: 39.5

• 13.8

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 73.1

RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • **25.5**

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


🥦 Above state value 🛛 🥑 At or below state value 🔹 ^ Suppressed

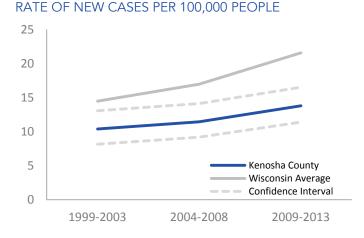
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

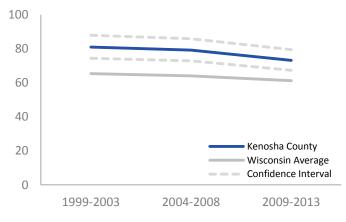
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

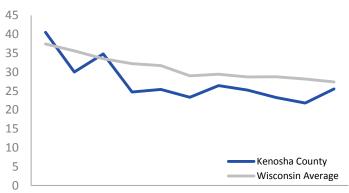
Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE


HEART ATTACK

A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

) WATER QUALITY KENOSHA COUNTY

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

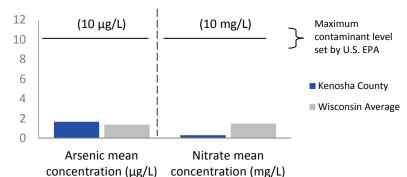
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) • 98.3%

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY KENOSHA COUNTY

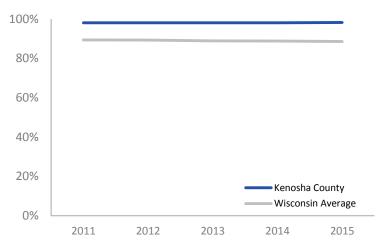
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

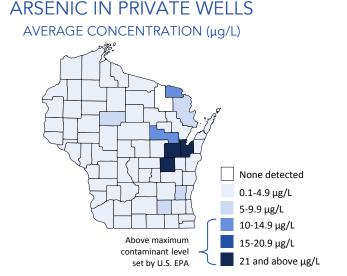

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

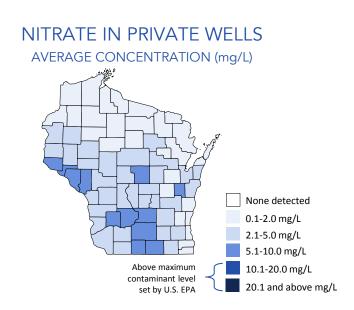
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

12 | Wisconsin Environmental Public Health Tracking

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 (PM_{2.5})" refers to the size of the particles, which are smaller than the width of a human hair.

Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

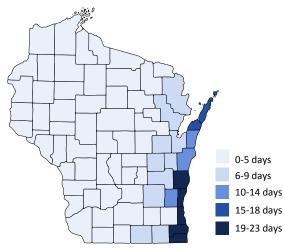
23 OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3

10.6 **PARTICULATE MATTER 2.5** ANNUAL AVERAGE (µg/m³) STATEWIDE: 9.1

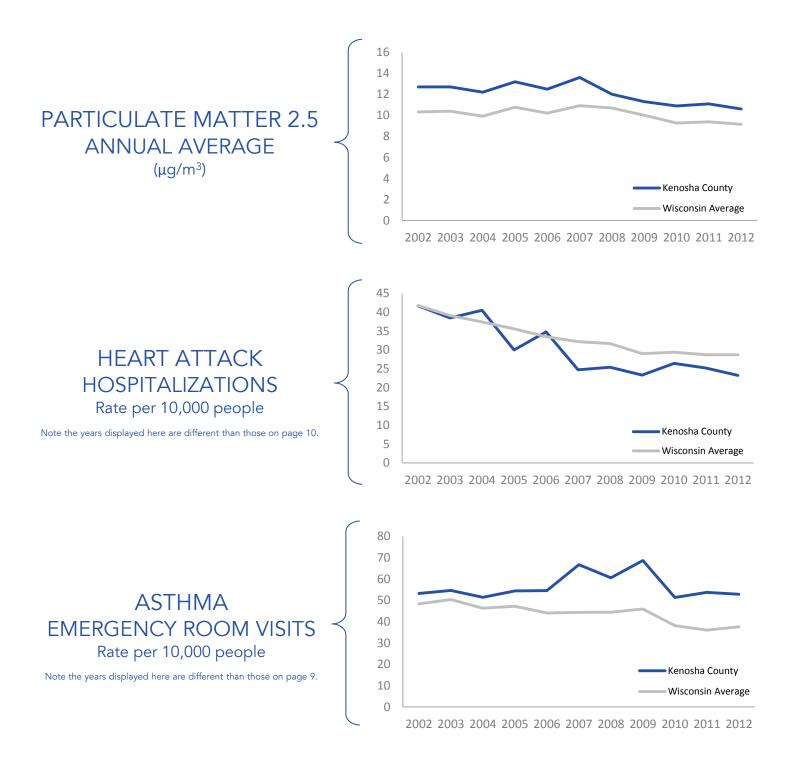
At or below state value Above state value ^ Suppressed

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.


DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 13

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

KEWAUNEE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

KEWAUNEE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health WISCONSIN

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

HOME HAZARDS KEWAUNEE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

14.0

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

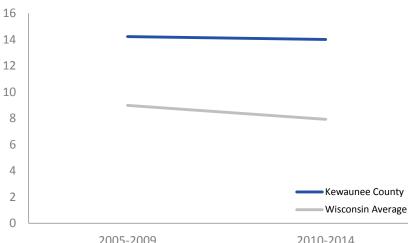
STATEWIDE: 7.9

0.0%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

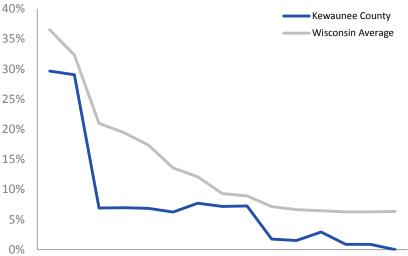
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

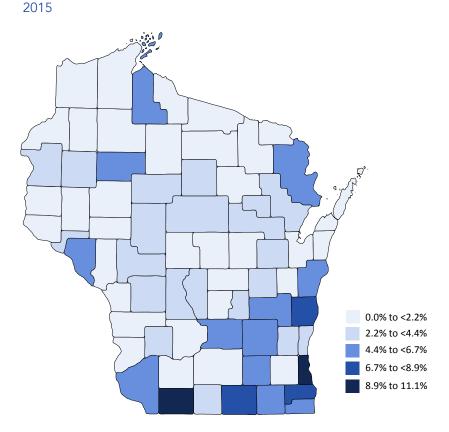
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

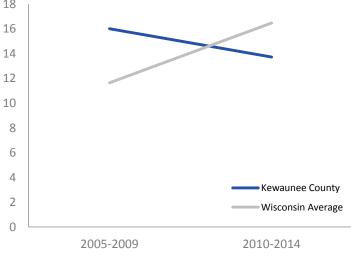
CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

■ 13.7 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5


O.O
 LYME DISEASE
 RATE OF CASES
 PER 100,000 PEOPLE
 STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

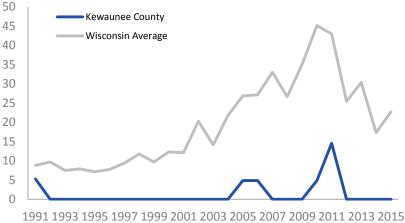
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

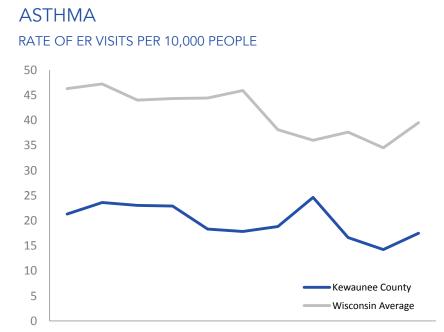
Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

ITTING ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5 30.7

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 50.7 LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 33.8
 HEART ATTACK
 RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


🔋 Above state value 🛛 📀 At or below state value 🔷 At or below state value 🔷 Suppressed

ASTHMA

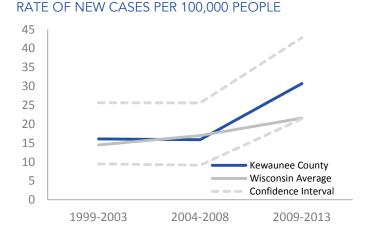
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

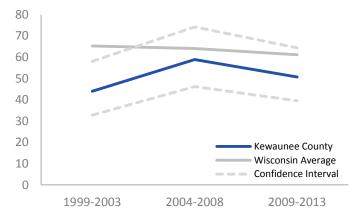
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

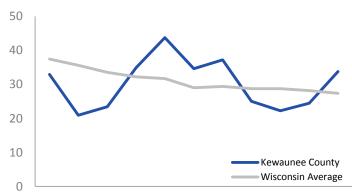

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

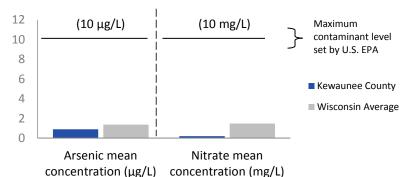
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 100.0%
FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY KEWAUNEE COUNTY

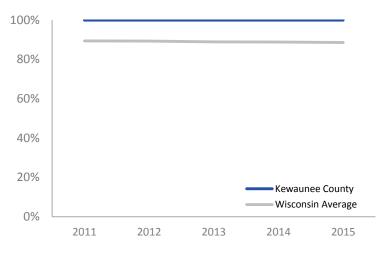
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

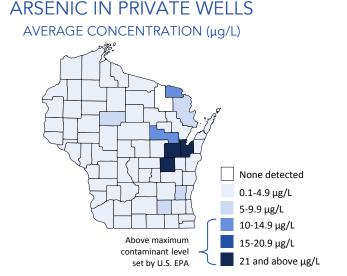

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

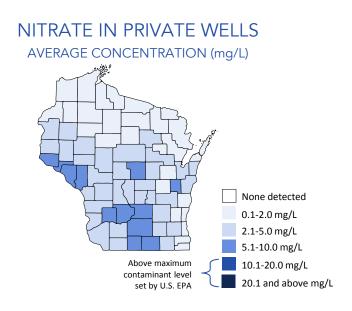
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

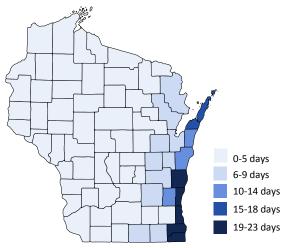
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 Ø 8.7
PARTICULATE MATTER 2.5
ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

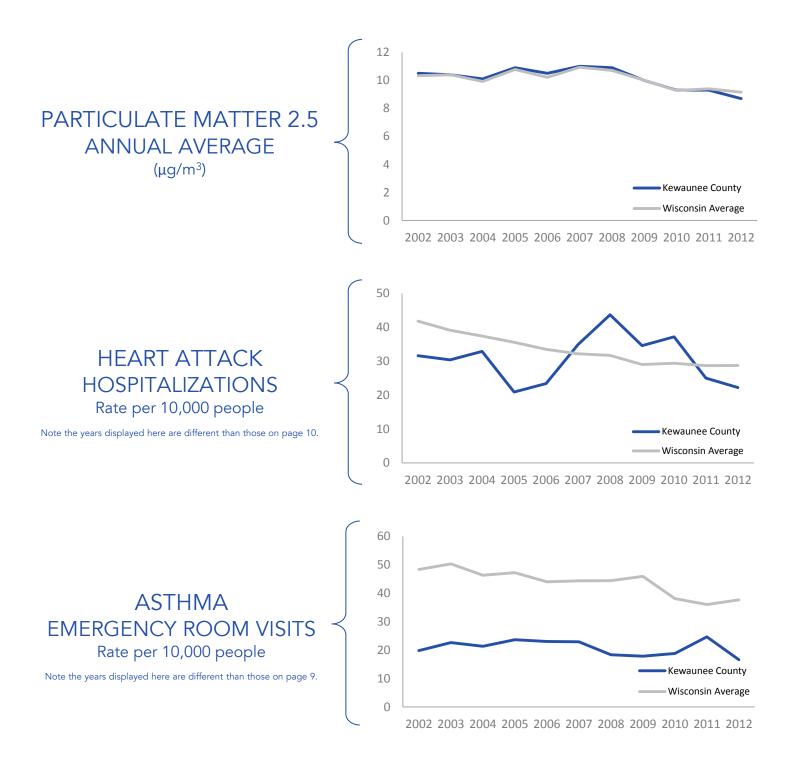
OZONE

The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.


Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

ndard, the better.


DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 13

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

LA CROSSE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

LA CROSSE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

Bureau of Environmental and Occupational Health

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS LA CROSSE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 3.7

CARBON MONOXIDE POISONING

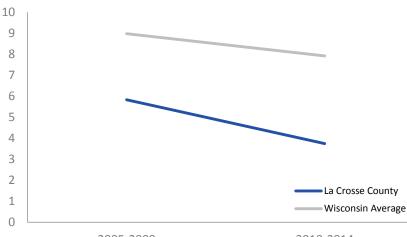
RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

• 2.1%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

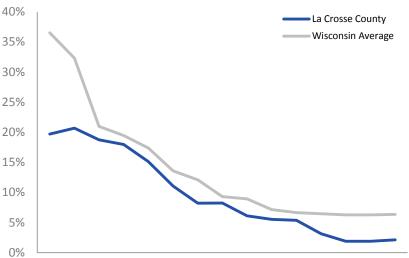
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

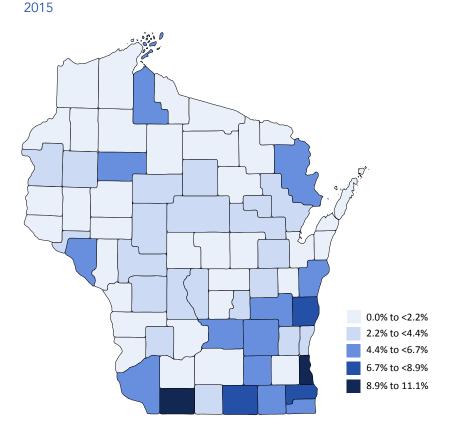
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

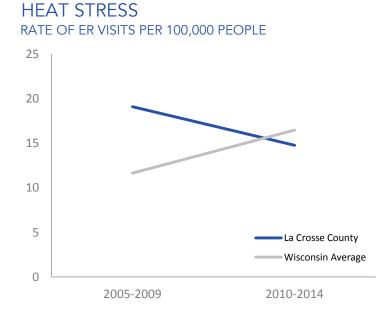
PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

$\begin{array}{l} \mbox{CHILDHOOD LEAD POISONING} \\ \mbox{Percent of tested children with blood lead} \geq 5 \ \mu g/dL \end{array}$

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

• 14.8 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 32.2
 IYME DISEASE
 RATE OF CASES
 PER 100,000 PEOPLE
 STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

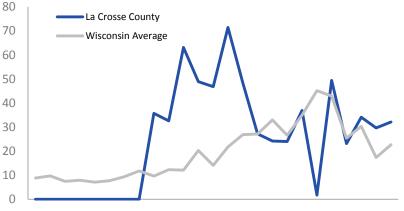
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

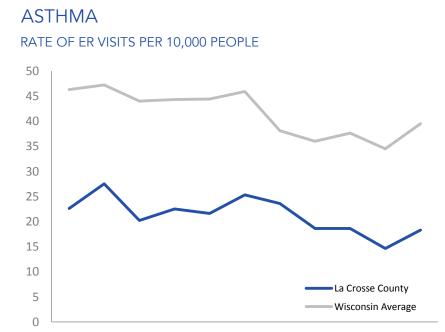
■ 18.3 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 27.2

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 60.4

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 21.6
 HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


🧿 Above state value 🛛 📀 At or below state value 🛛 ^ Suppressed

ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

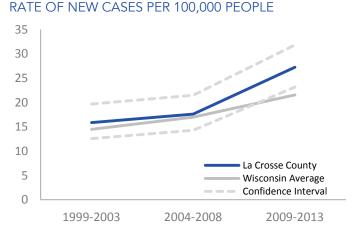
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

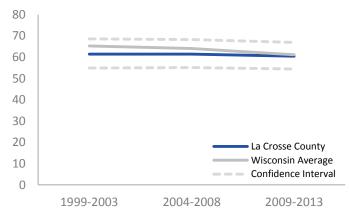
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

HEALTH OUTCOMES LA CROSSE COUNTY

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

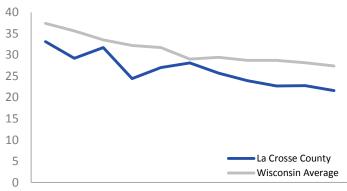
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

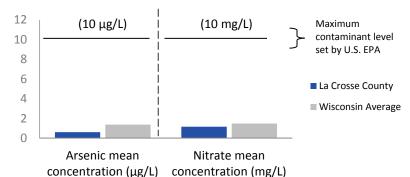
STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) • 94.9%

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY LA CROSSE COUNTY

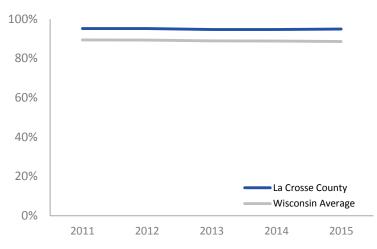
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

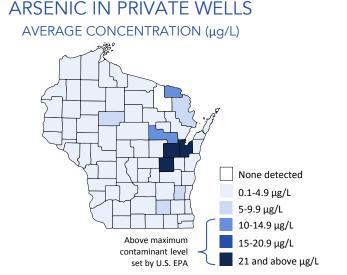

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

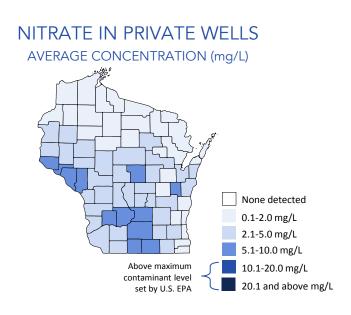
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER

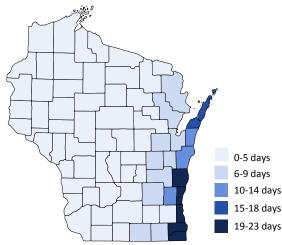



*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

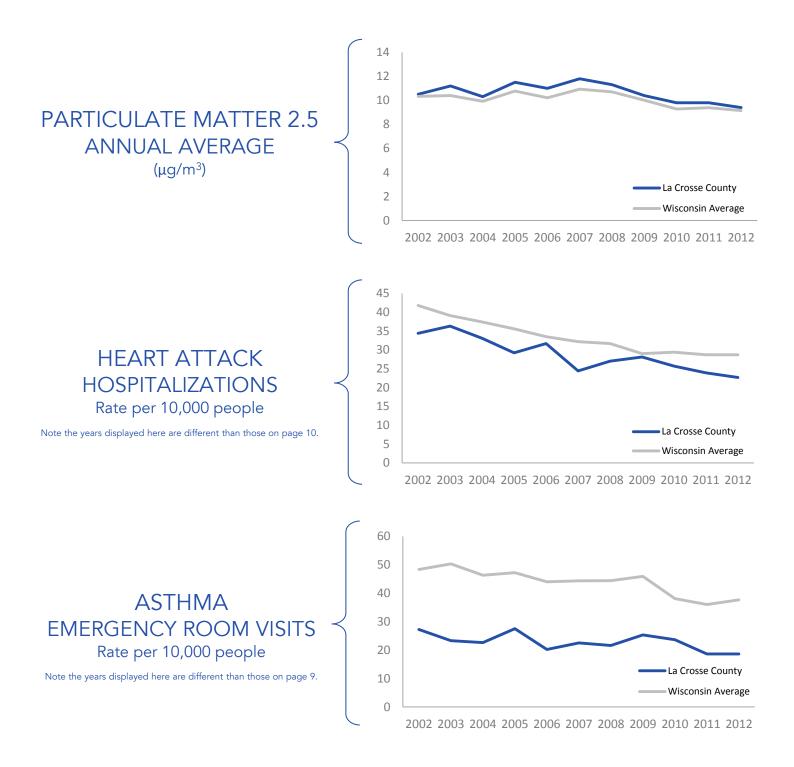
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **9.4 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

LAFAYETTE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

LAFAYETTE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

WISCONSIN

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

Bureau of Environmental and Occupational Health

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2005-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(HOME HAZARDS LAFAYETTE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

9.5

CARBON MONOXIDE POISONING

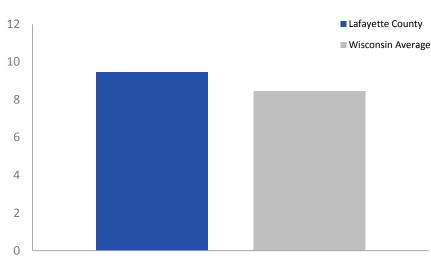
RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 8.5

• 11.1%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE (2005-2014)

CARBON MONOXIDE POISONING

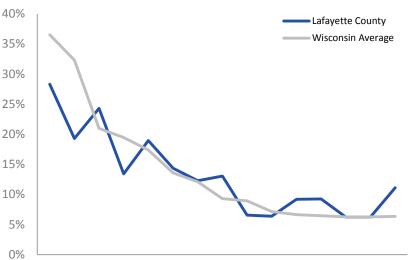
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

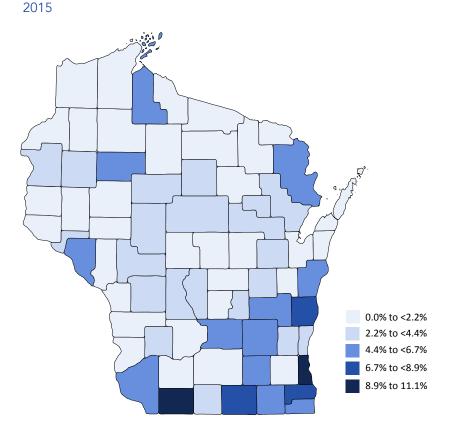
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

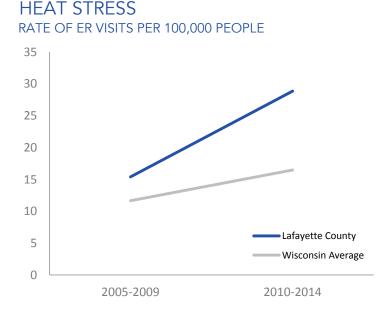
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

$\begin{array}{l} \mbox{CHILDHOOD LEAD POISONING} \\ \mbox{percent of tested children with blood lead} \geq 5 \ \mu g/dL \end{array}$

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

Barrier Stress RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 In the second second

Above state value

At or below state value

^ Suppressed

HEAT STRESS

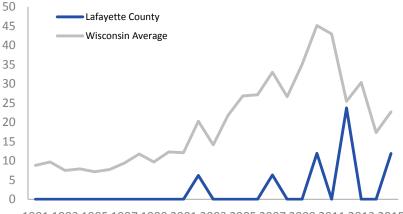
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

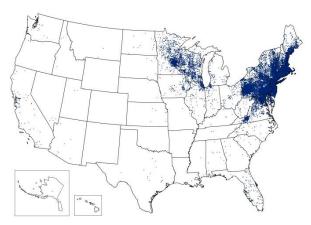
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

22.5 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

ASTHMA

20.2

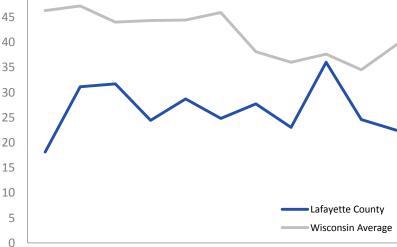
MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6

• 47.5

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1

16.7 HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

Above state value At or below state value ^ Suppressed


ASTHMA

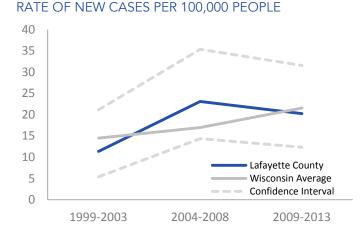
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our asthma disparities survillance brief, available in the resources section of our website.

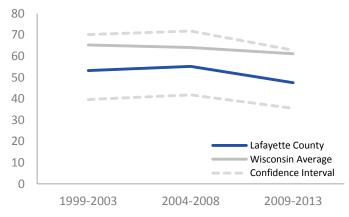
RATE OF ER VISITS PER 10,000 PEOPLE 50 45

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

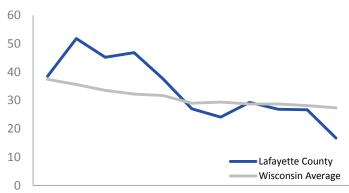

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5

preferred)

At or below state value (with exception

of fluoride where above state value is

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

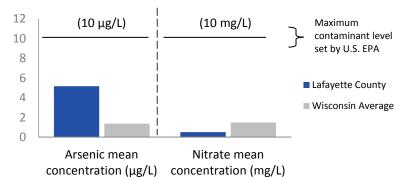
Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> S.2 ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.


> FLUORIDE PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

> > STATEWIDE: 88.6%

74.7%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY LAFAYETTE COUNTY

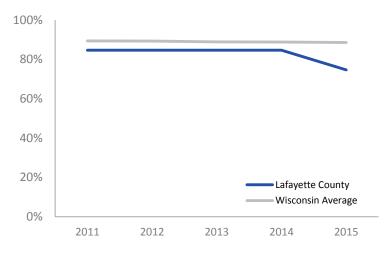
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

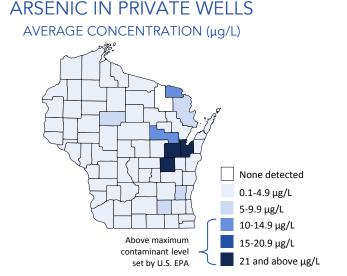

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

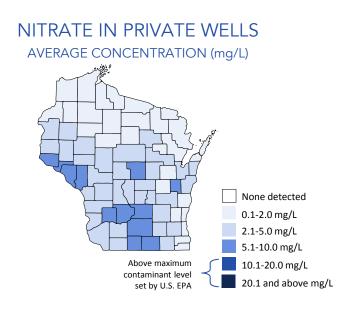
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

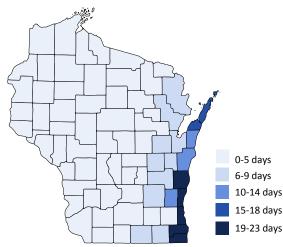
Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

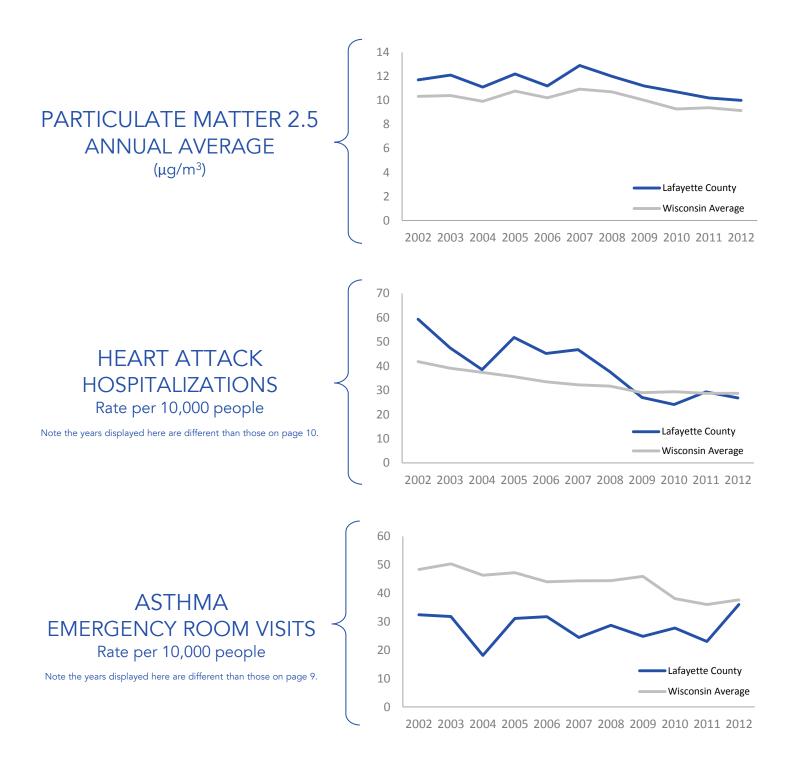
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **10.0 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level $\geq 5 \ \mu g/dL$

Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: Averaged data from 2005-2014

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 ,E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population. These data were averaged over ten years for five counties in order to minimize supression.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

LANGLADE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

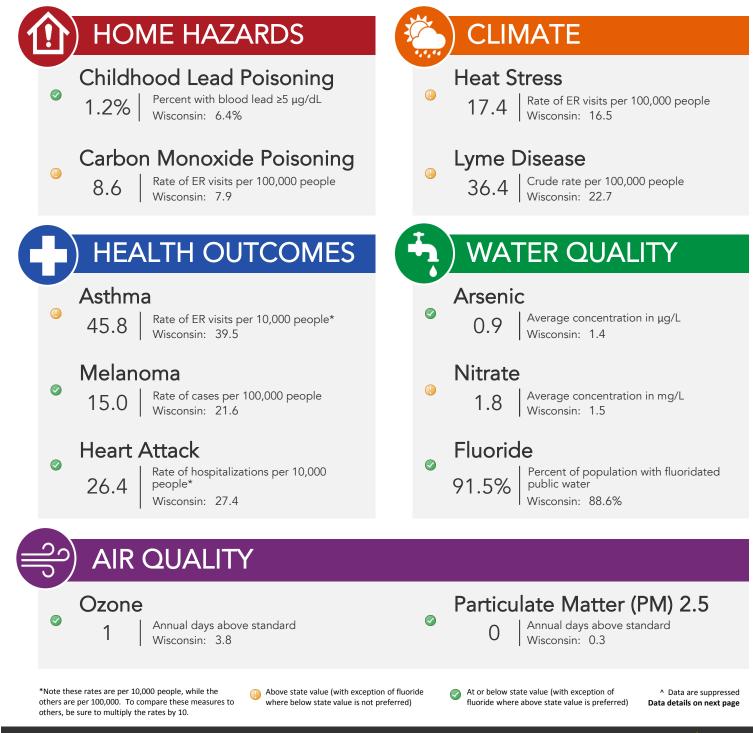
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

LANGLADE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(HOME HAZARDS LANGLADE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 8.6

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

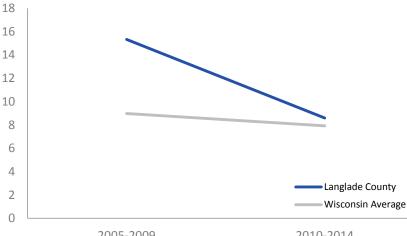
STATEWIDE: 7.9

• 1.2%

CHILDHOOD LEAD POISONING

 $\begin{array}{l} \mbox{PERCENT OF TESTED CHILDREN} \\ \mbox{WITH BLOOD LEAD} \geq 5 \ \mbox{\mug/dL} \end{array}$

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

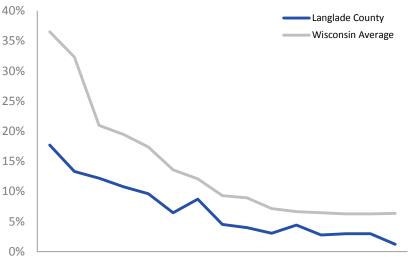
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

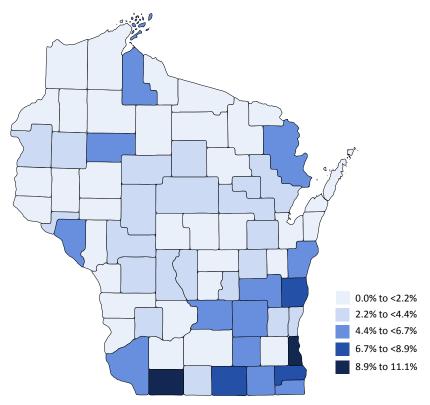
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD 25 µg/dL

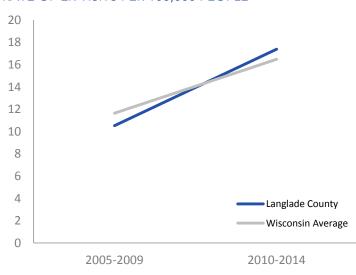
2015 PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


ITTLE HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 36.4 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

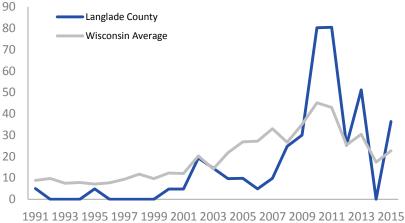
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

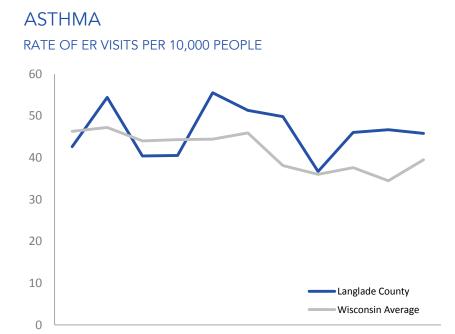
45.8 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 15.0

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 64.2

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • **26.4**

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value At or below state value Suppressed

ASTHMA

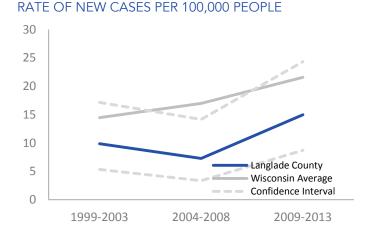
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

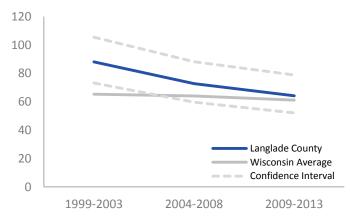
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

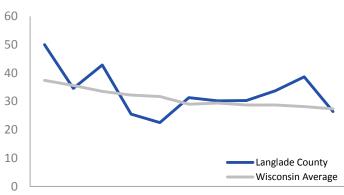

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE


HEART ATTACK

A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L) STATEWIDE: 1.5

At or below state value (with exception

of fluoride where above state value is

preferred)

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

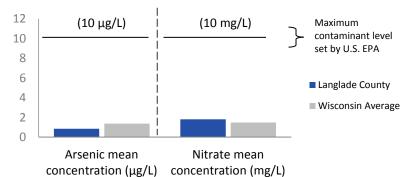
Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.


> FLUORIDE PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

• 91.5%

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY LANGLADE COUNTY

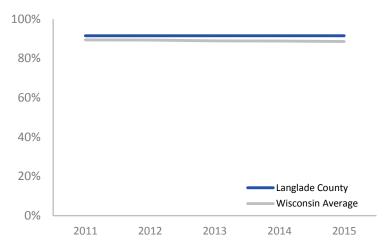
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

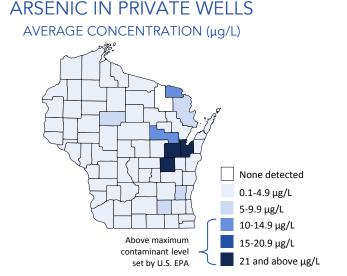

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

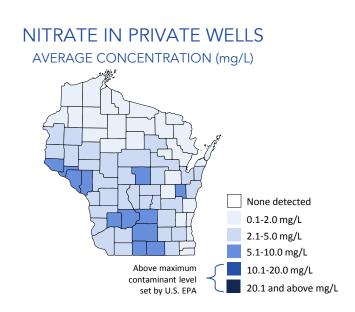
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

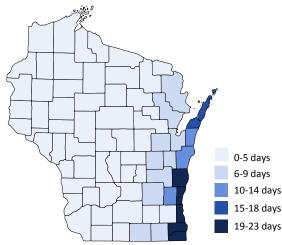
Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

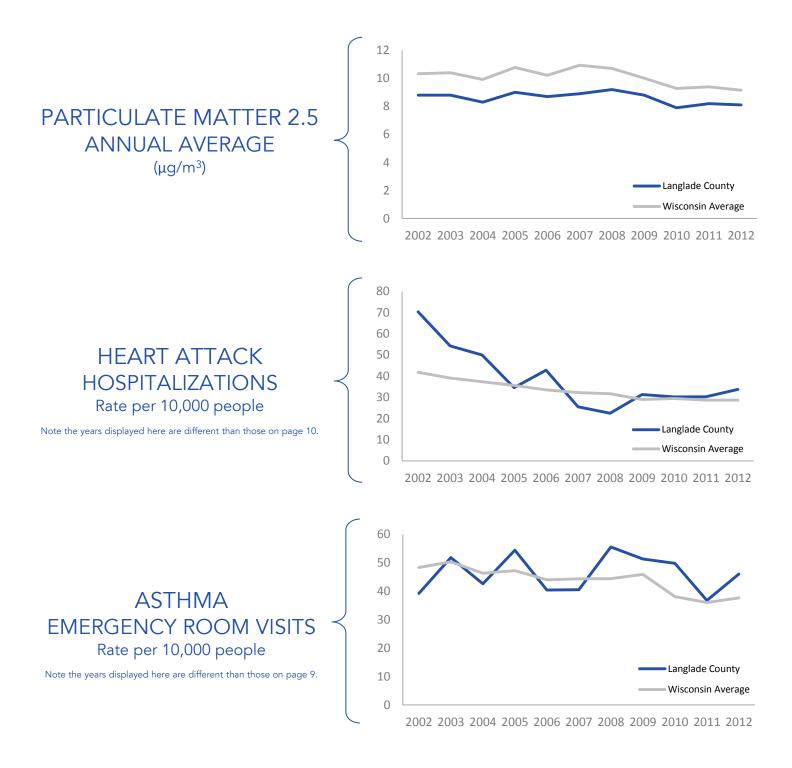
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 ⊘ 8.1
PARTICULATE MATTER 2.5
ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

LINCOLN COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

LINCOLN COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(HOME HAZARDS LINCOLN COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 12.6

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

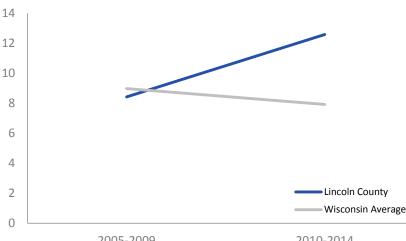
STATEWIDE: 7.9

• 3.4%

CHILDHOOD LEAD POISONING

 $\begin{array}{l} \mbox{PERCENT OF TESTED CHILDREN} \\ \mbox{WITH BLOOD LEAD} \geq 5 \ \mbox{\mug/dL} \end{array}$

STATEWIDE: 6.4%


Above state value 🥏

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

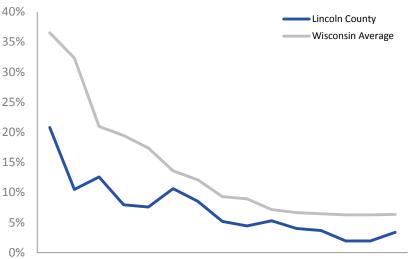
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

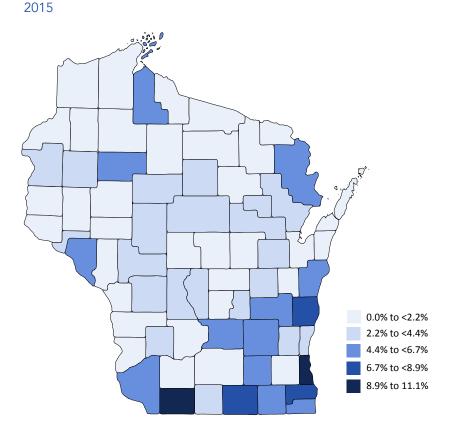
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

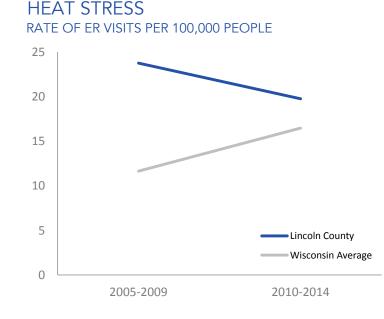
PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

$\begin{array}{l} \mbox{CHILDHOOD LEAD POISONING} \\ \mbox{PERCENT OF TESTED CHILDREN WITH BLOOD LEAD} \geq 5 \ \mu g/dL \end{array}$

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

I 19.7 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 B2.2
LYME DISEASE
RATE OF CASES
PER 100,000 PEOPLE
STATEWIDE: 22.7

^ Suppressed

Above state value

At or below state value

HEAT STRESS

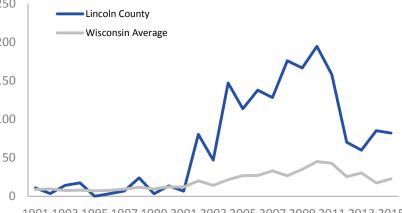
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infectedRAblack-legged tick (*Ixodes scapularis*) and is becoming250more common in Wisconsin. Lyme disease was the200fourth highest reported notifiable communicable200disease in 2015.200

The highest number of cases are typically reported ¹⁵⁰ in the northwestern region of Wisconsin, but in recent years cases have increased in the central and ¹⁰⁰ eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

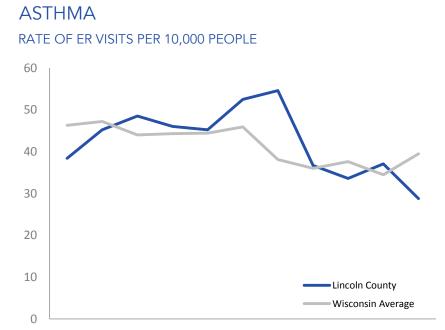
28.8 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 22.4

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 64.1

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • **39.2** HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value S At or below state value ^ Suppressed

ASTHMA

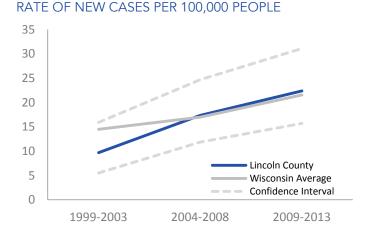
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

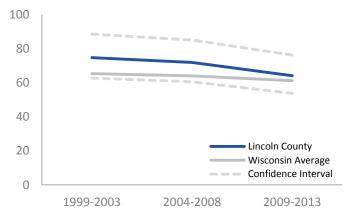
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

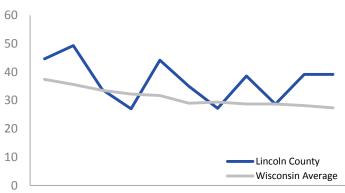
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ✓ U.4 ARSENIC
> AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

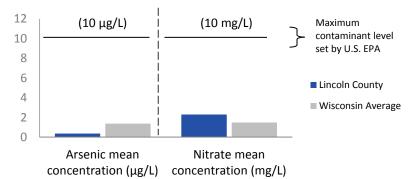
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

2.3 NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) • 94.4%

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY LINCOLN COUNTY

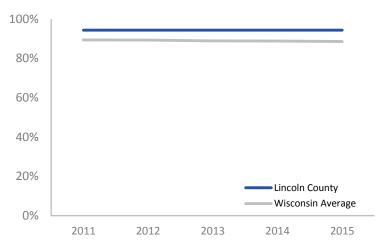
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

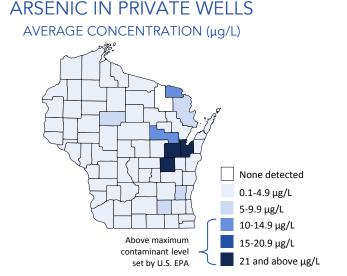

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

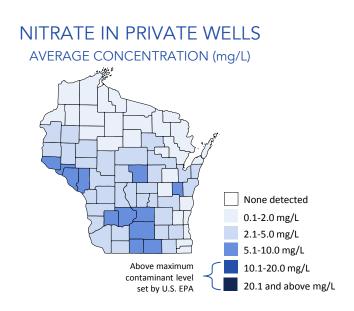
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



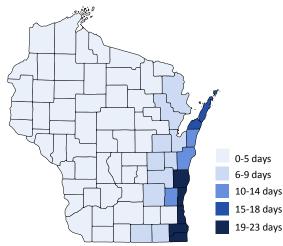

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

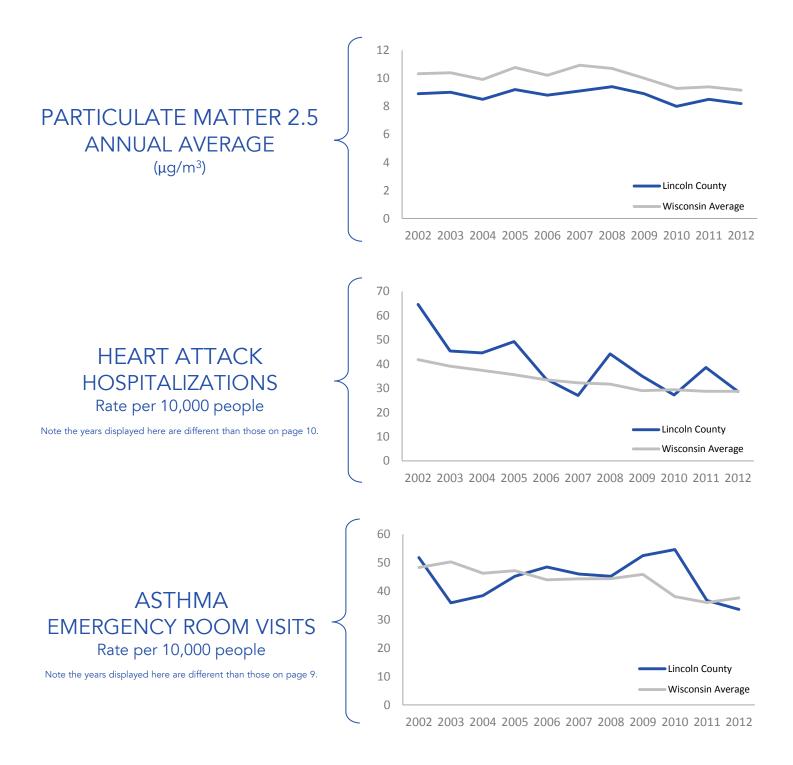
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 STATEWIDE: 9.1
STATEWIDE: 9.1

4 Above state value At or below state value Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

MANITOWOC COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(HOME HAZARDS MANITOWOC COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 3.1

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

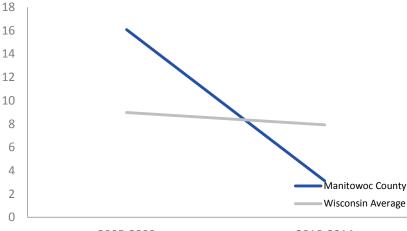
STATEWIDE: 7.9

• 5.1%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

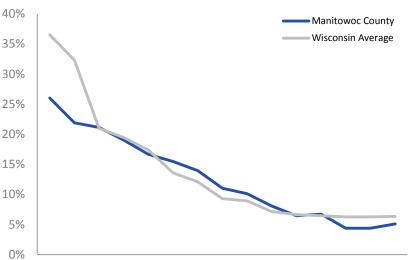
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

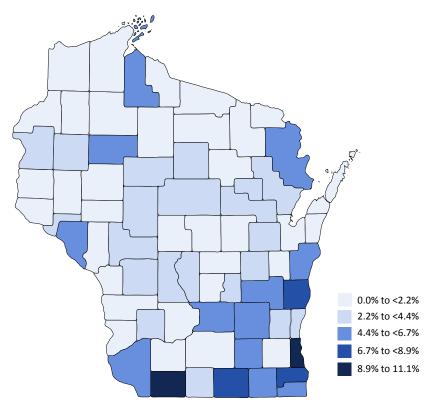
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ${\geq}5~\mu\text{g/dL}$ 2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

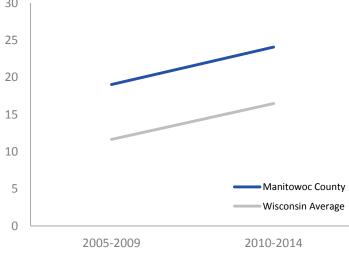
24.1

HEAT STRESS

RATE OF ER VISITS

PER 100,000 PEOPLE

STATEWIDE: 16.5


2.5
 LYME DISEASE
 RATE OF CASES
 PER 100,000 PEOPLE
 STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

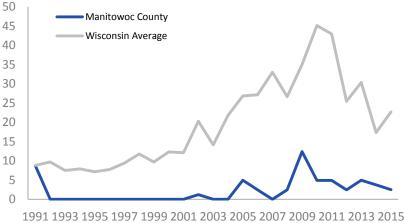
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

Manitowoc County

Wisconsin Average

45.0 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

ASTHMA

10

5

0

• 29.4

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 52.2 LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 29.4
 HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

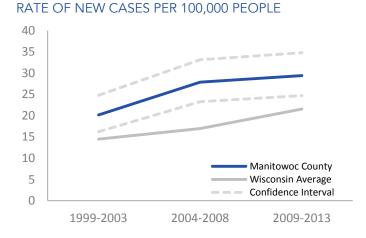
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

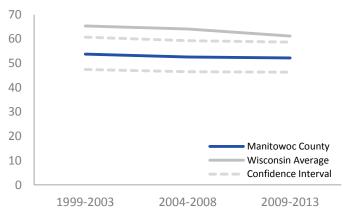
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

RATE OF ER VISITS PER 10,000 PEOPLE


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

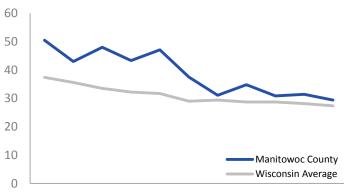
Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC
> AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

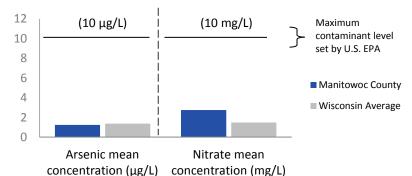
 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

2.7
 NITRATE

AVERAGE CONCENTRATION
IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 86.1%
FLUORIDE
PERCENT OF POPULATION WITH

FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY MANITOWOC COUNTY

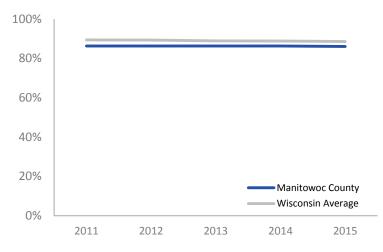
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

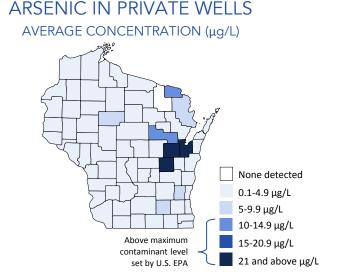

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

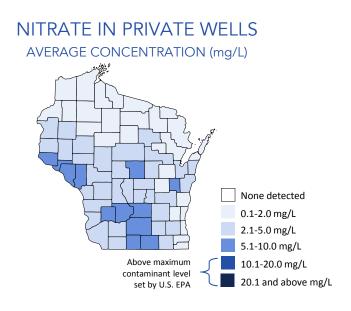
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER

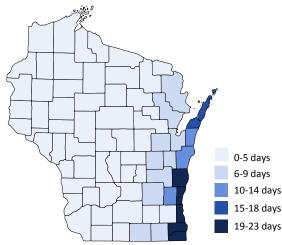



*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

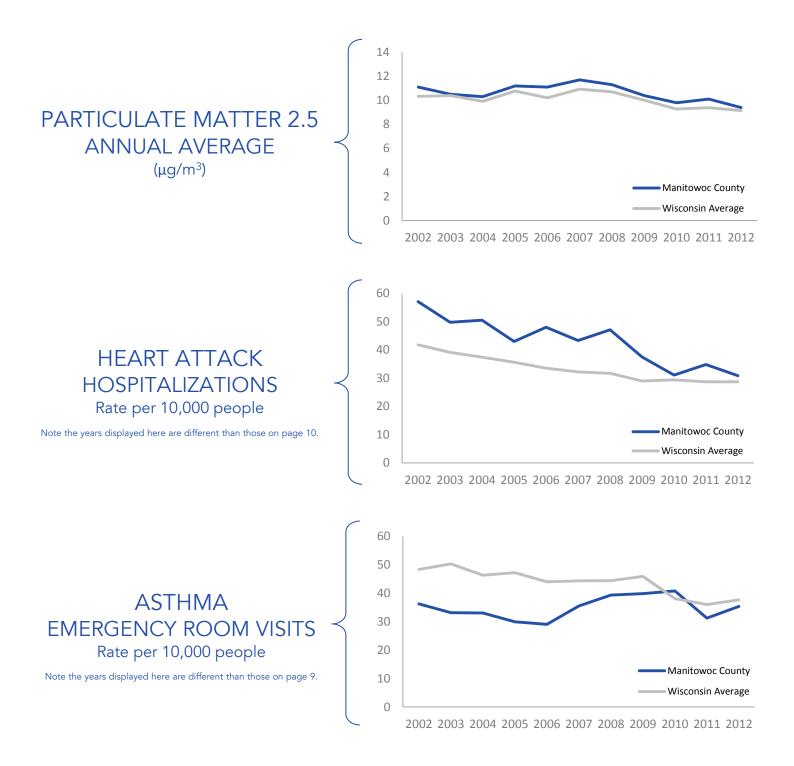
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **9.4 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

MARATHON COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

MARATHON COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS MARATHON COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 8.2

CARBON MONOXIDE

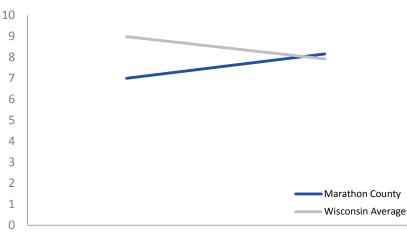
POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

• 2.3%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

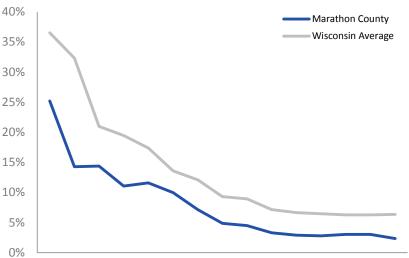
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

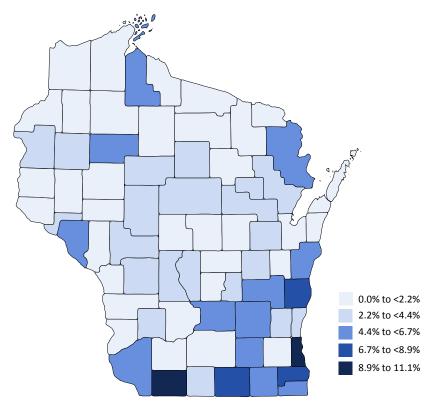
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

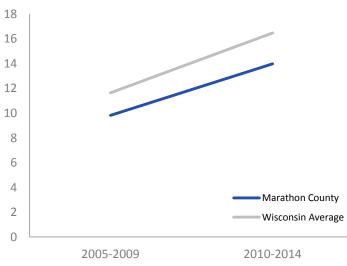
CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ${\geq}5~\mu\text{g/dL}$ 2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


■ 14.0 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 49.3 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

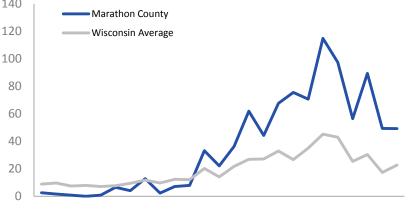
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infectedRAblack-legged tick (*Ixodes scapularis*) and is becoming140more common in Wisconsin. Lyme disease was the
fourth highest reported notifiable communicable120disease in 2015.100

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

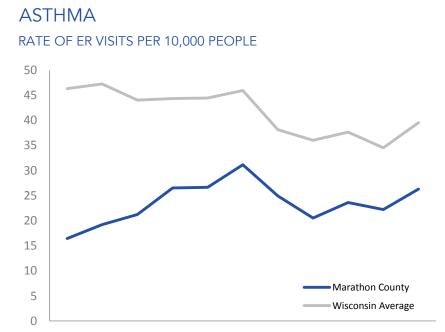
Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

26.3
ASTHMA
RATE OF ER VISITS
PER 10,000 PEOPLE
STATEWIDE: 39.5

• 23.5

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • **48.8**

RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1


STATEWIDE: 27.4

ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

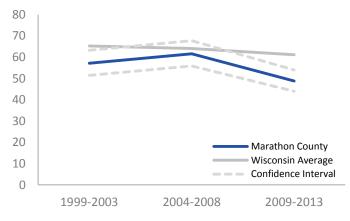
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

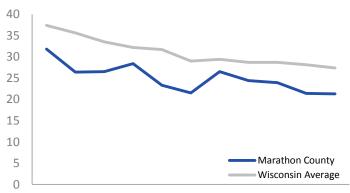

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> COLC ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (μg/L)

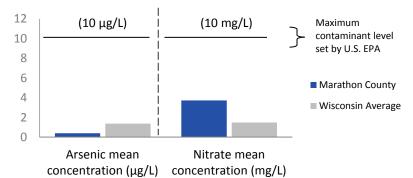
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) • 92.2% FLUORIDE PERCENT OF POPULATION WITH

FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY MARATHON COUNTY

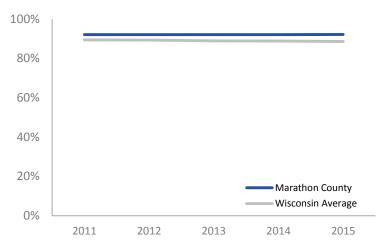
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

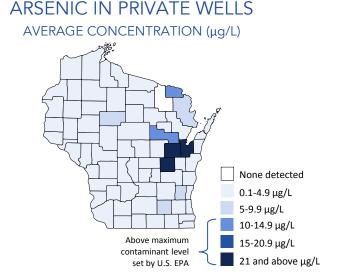

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

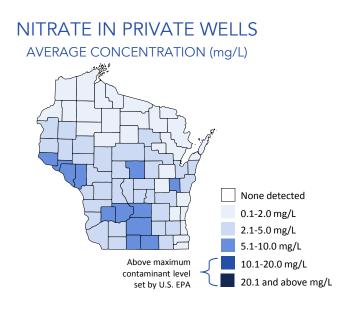
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

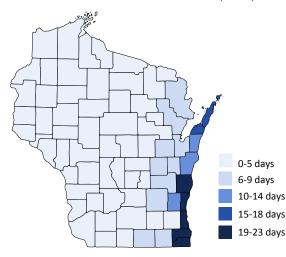
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **B.9 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

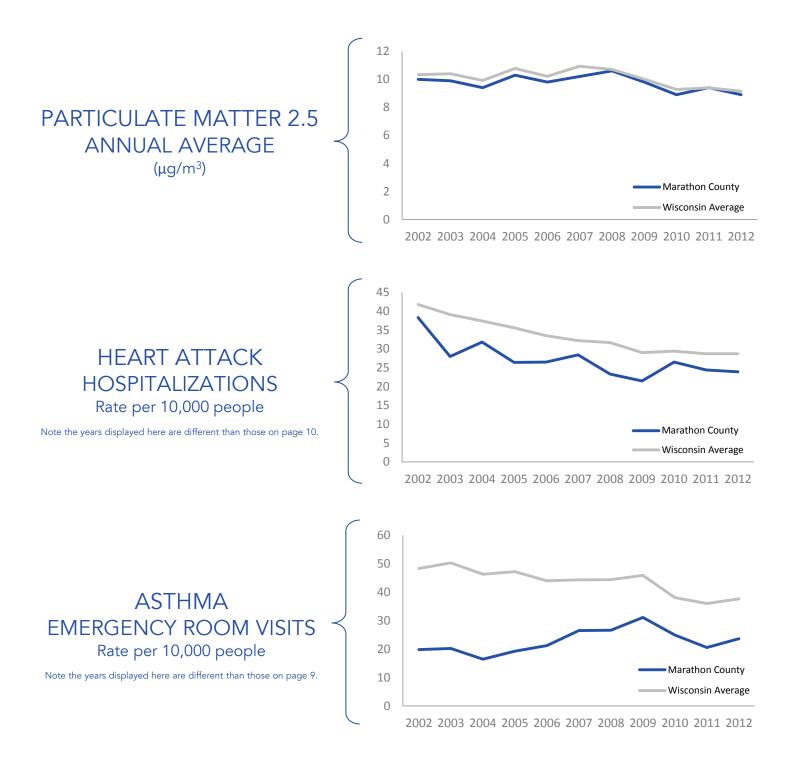
OZONE

The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.


Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

g conditions like asthma. Levels of these p Counties without monitoring stations hav


DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 13

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

MARINETTE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

MARINETTE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(HOME HAZARDS MARINETTE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 11.4

CARBON MONOXIDE

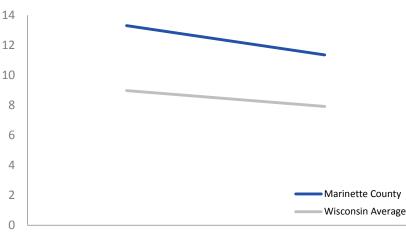
POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

• 4.6%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

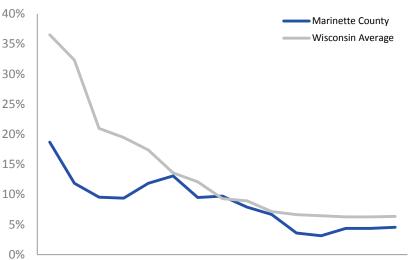
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

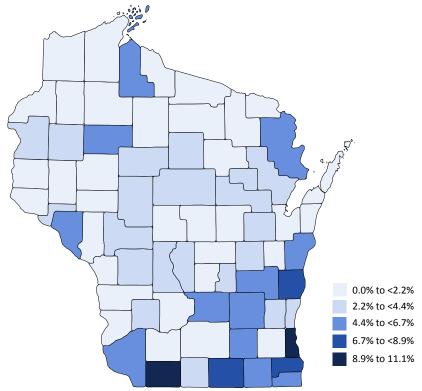
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

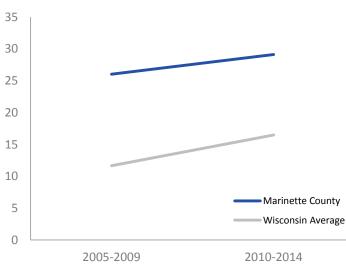
CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


29.1 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 29.4 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

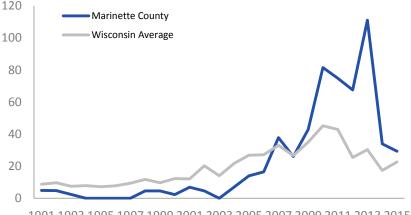
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected RA black-legged tick (*Ixodes scapularis*) and is becoming 120 more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable 100 disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

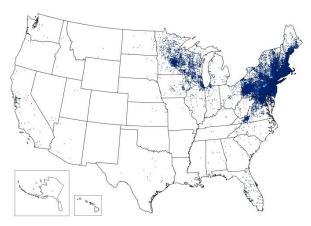
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

> Marinette County Wisconsin Average

• 58.9 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

ASTHMA

20

10

0

• 25.8

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6

• 72.3 LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1

54.9 HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

Above state value At or below state value ^ Suppressed

ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

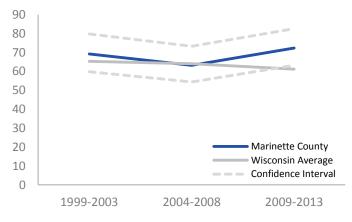
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our asthma disparities survillance brief, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

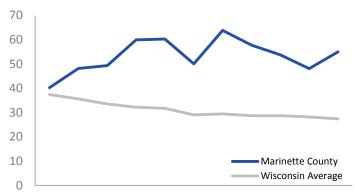

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC
> AVERAGE CONCENTRATION IN PUBLIC WATER (μg/L)

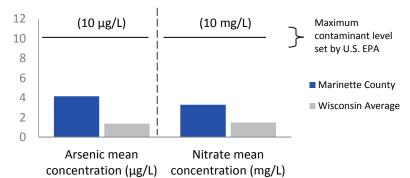
STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 80.9%
FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY MARINETTE COUNTY

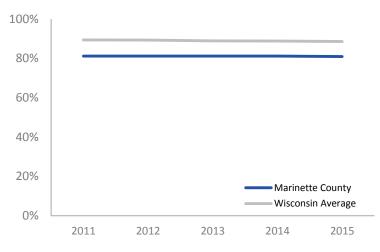
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

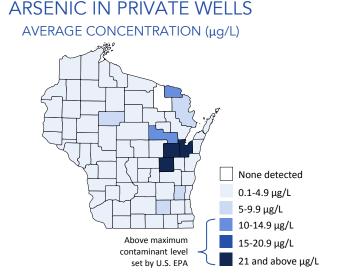

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

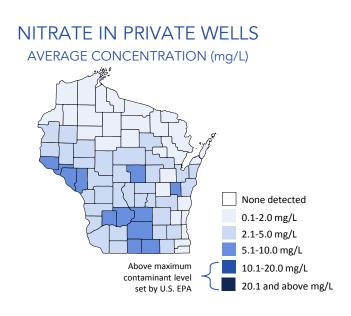
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 (PM_{2.5})" refers to the size of the particles, which are smaller than the width of a human hair.

Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3

8.5 **PARTICULATE MATTER 2.5** ANNUAL AVERAGE (µg/m³) STATEWIDE: 9.1

At or below state value Above state value ^ Suppressed

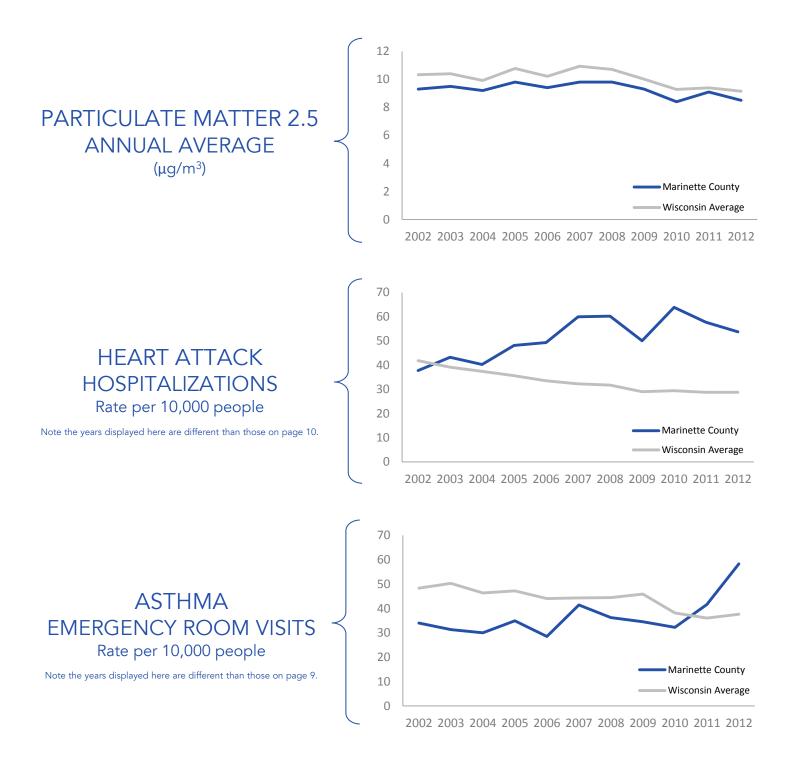
OZONE

The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

ANNUAL DAYS ABOVE STANDARD (2012)


OZONE

0-5 days 6-9 days 10-14 days 15-18 days 19-23 days

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 13

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

MARQUETTE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

MARQUETTE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health WISCONSIN

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS MARQUETTE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 10.4

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

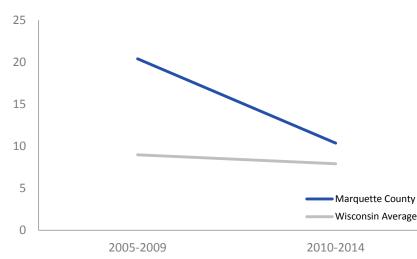
STATEWIDE: 7.9

• 1.9%

CHILDHOOD LEAD POISONING

 $\begin{array}{l} \mbox{PERCENT OF TESTED CHILDREN} \\ \mbox{WITH BLOOD LEAD} \geq 5 \ \mbox{\mug/dL} \end{array}$

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

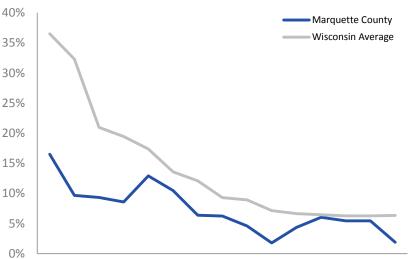
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

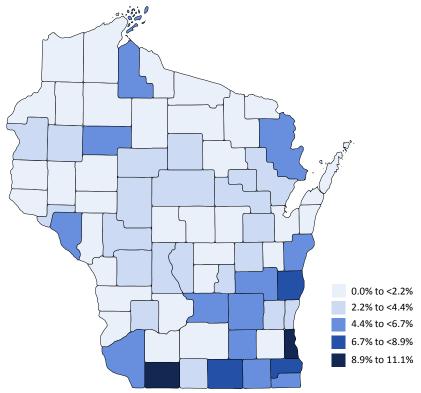
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

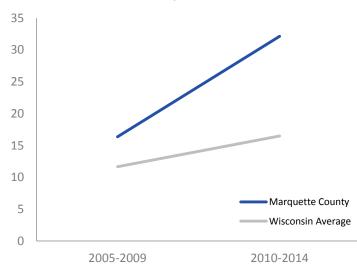
2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

32.1
 HEAT STRESS
 RATE OF ER VISITS
 PER 100,000 PEOPLE
 STATEWIDE: 16.5


B6.2
LYME DISEASE
RATE OF CASES
PER 100,000 PEOPLE
STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

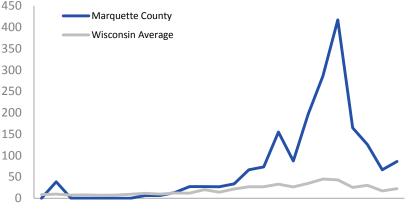
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infectedRAblack-legged tick (*Ixodes scapularis*) and is becoming450more common in Wisconsin. Lyme disease was the400fourth highest reported notifiable communicable350disease in 2015.200

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

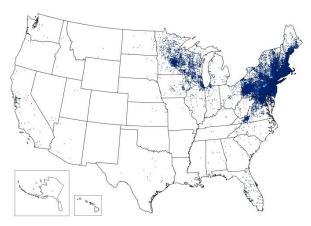
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

Marquette County

Wisconsin Average

40.1 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

10

5

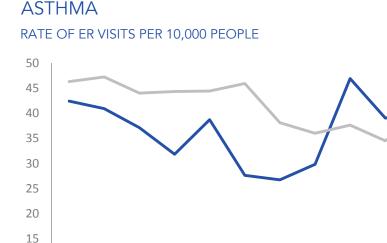
0

• 19.0

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 76.3

RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 35.3
 HEART ATTACK
 RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

61.1 STATEWIDE: 27.4


Above state value 🛛 🔗 At or below state value 🔹 ^ Suppressed

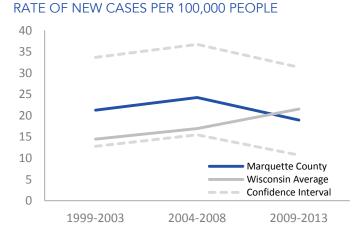
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

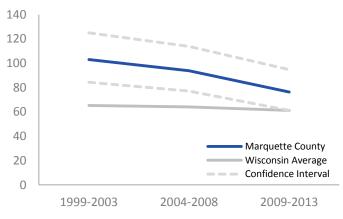
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

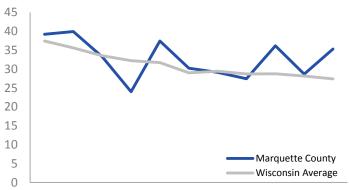

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> 2.4 ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

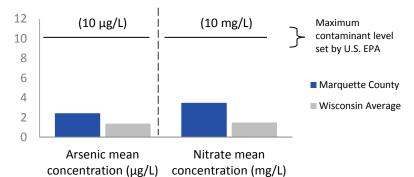
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

3.5 NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) O.0% FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY MARQUETTE COUNTY

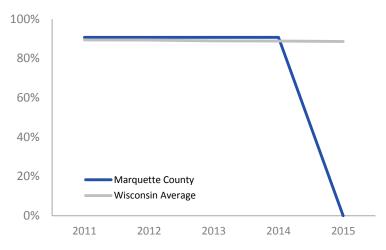
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

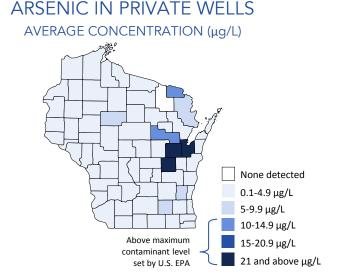

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

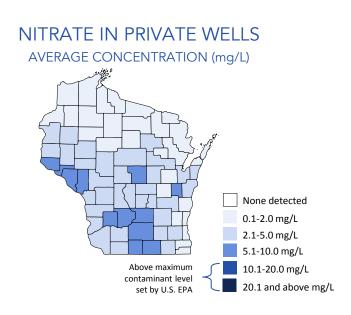
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER

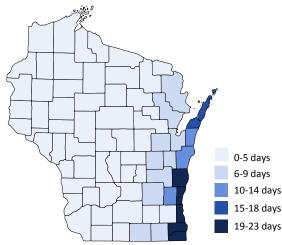



*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

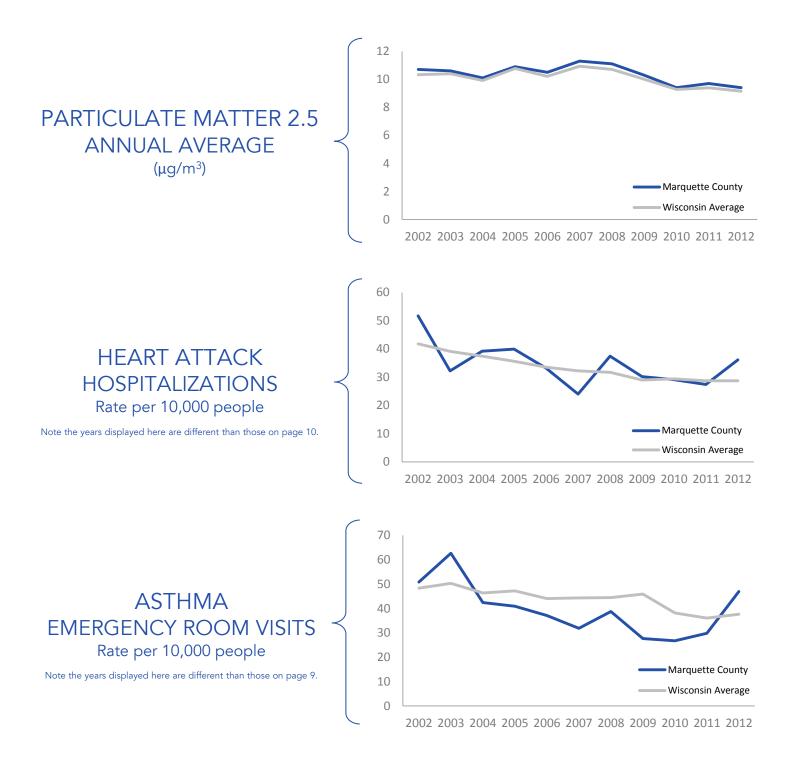
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **9.4 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

MENOMINEE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

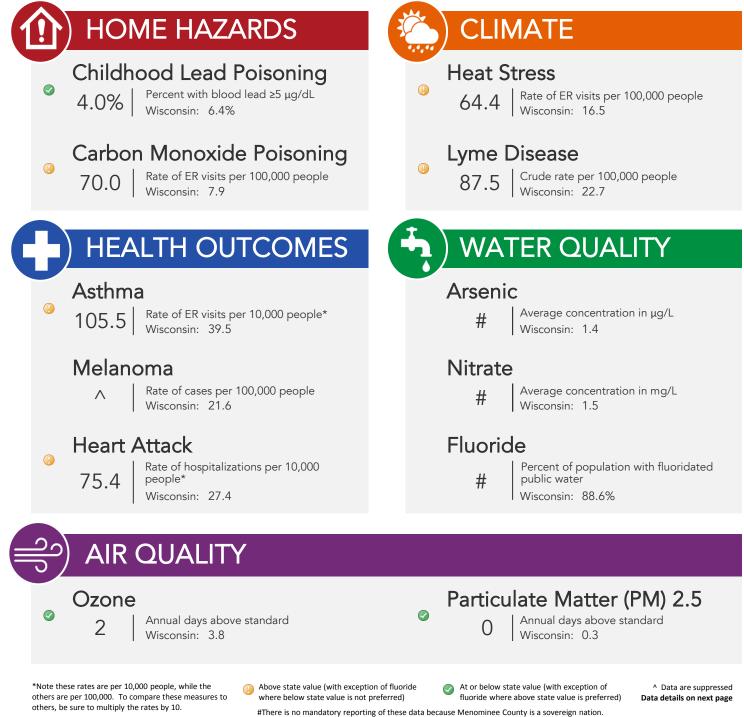
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

MENOMINEE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

There is no mandatory reporting of these data because Menominee County is a sovereign nation.

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS MENOMINEE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 70.0

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

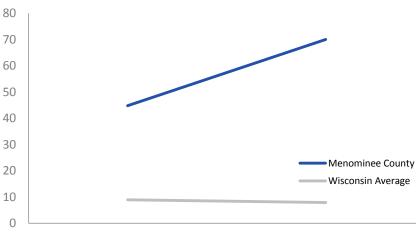
STATEWIDE: 7.9

• 4.0%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

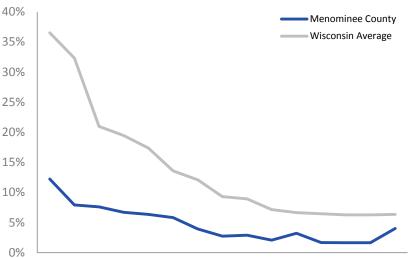
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

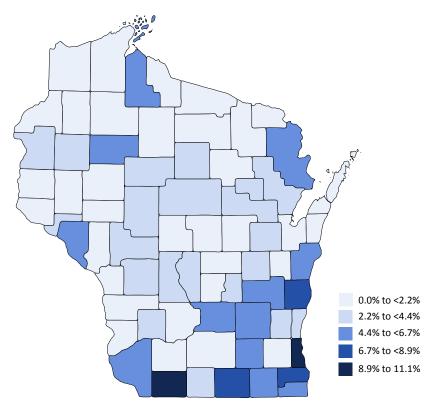
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

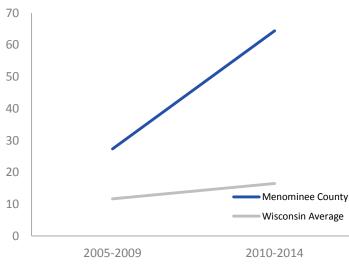
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ${\geq}5~\mu\text{g/dL}$ 2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

• 64.4 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 87.5
LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value ^ Suppressed

HEAT STRESS

Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal. 250

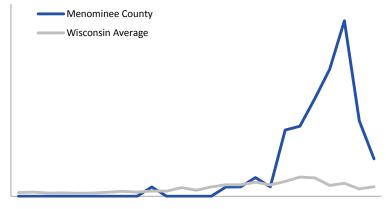
200

150

100

50

LYME DISEASE


Lyme disease is spread by the bite of an infectedRAblack-legged tick (*Ixodes scapularis*) and is becoming450more common in Wisconsin. Lyme disease was the400fourth highest reported notifiable communicable350disease in 2015.300

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

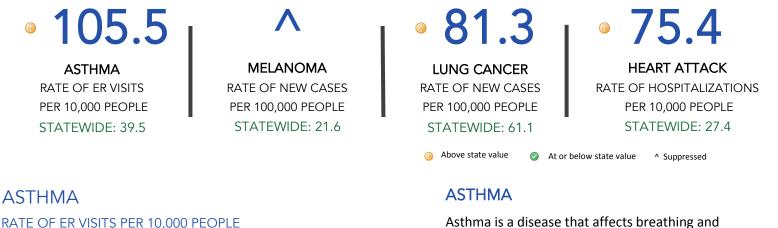
The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

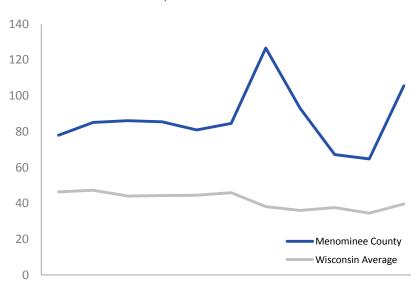

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015




Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as

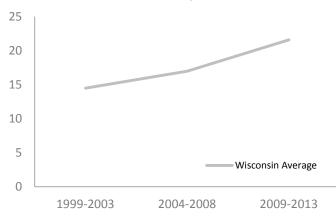
outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

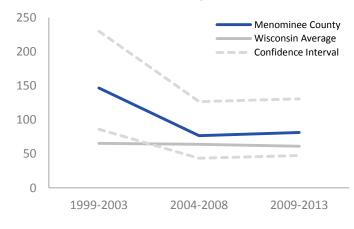
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

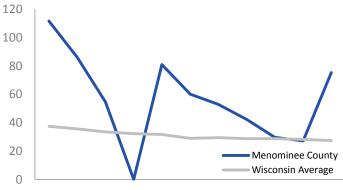
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

No data*

ARSENIC

AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred)

high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

No data*

NITRATE

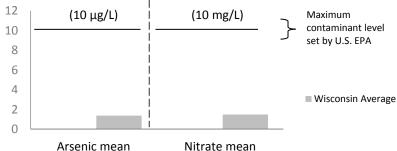
AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5

At or below state value (with exception of fluoride where above state value is preferred)

No data*

FLUORIDE


PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

*There is no mandatory reporting of these data because Menominee County is a sovereign nation.

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

concentration (μ g/L) concentration (mg/L)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. **Environmental Protection Agency.**

WATER QUALITY MENOMINEE COUNTY

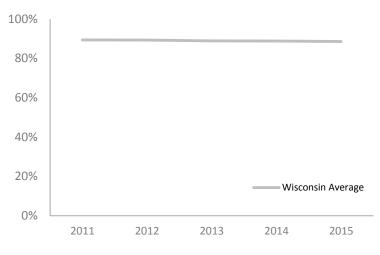
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

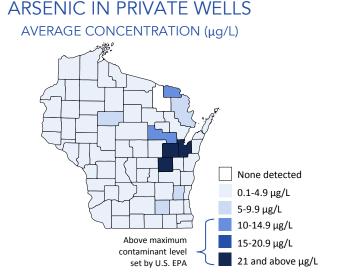

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

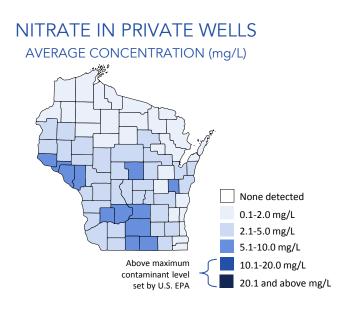
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

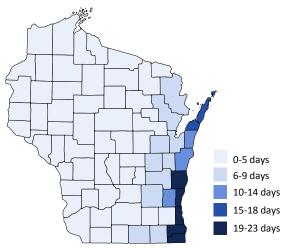
Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

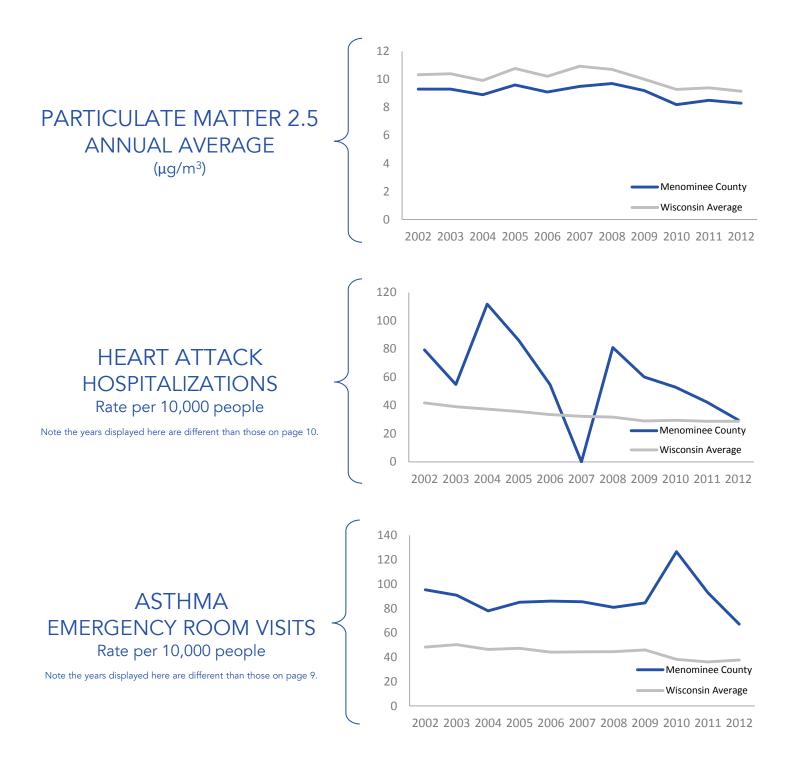
PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **B.3 PARTICULATE MATTER 2.5** ANNUAL AVERAGE (μg/m³) STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed


OZONE

The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*


*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

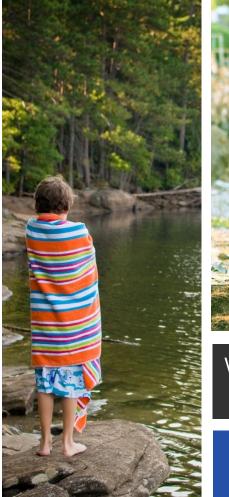
Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)



<image>

MILWAUKEE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

MILWAUKEE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(HOME HAZARDS MILWAUKEE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 8.5

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

9.6%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

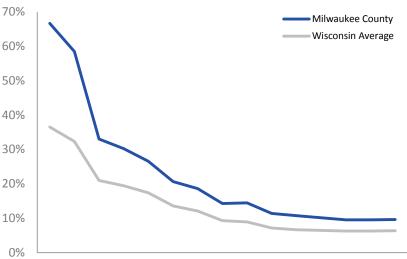
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

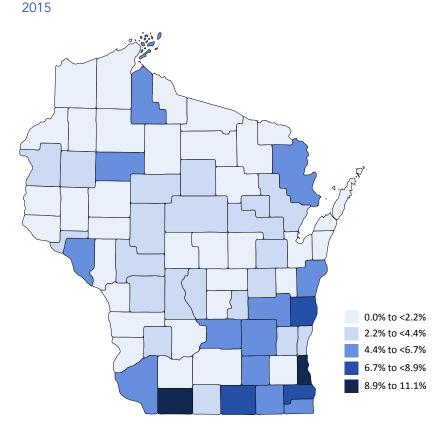
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

$\begin{array}{l} \mbox{CHILDHOOD LEAD POISONING} \\ \mbox{percent of tested children with blood lead} \geq 5 \ \mu g/dL \end{array}$

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

■ 11.8
HEAT STRESS
RATE OF ER VISITS
PER 100,000 PEOPLE
STATEWIDE: 16.5

Above state value

^ Suppressed

HEAT STRESS

Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

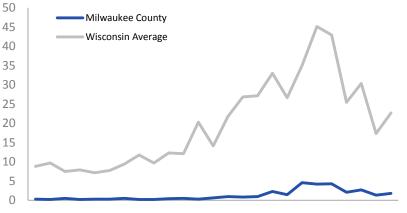
At or below state value

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

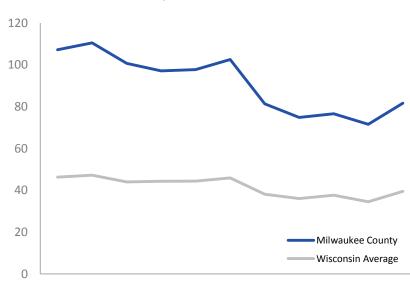
BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

81.6
ASTHMA
RATE OF ER VISITS
PER 10,000 PEOPLE
STATEWIDE: 39.5

• 13.7

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 71.1


LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 29.5 HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

^ Suppressed

ASTHMA

RATE OF ER VISITS PER 10,000 PEOPLE

ASTHMA

Above state value

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

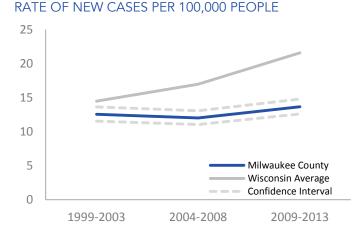
At or below state value

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

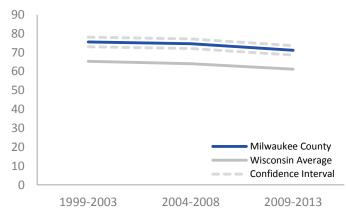
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

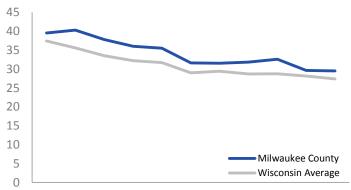

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

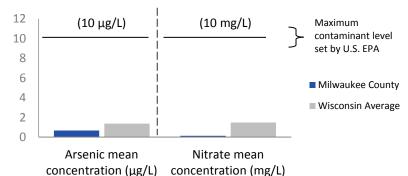
STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 100.0%
FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY MILWAUKEE COUNTY

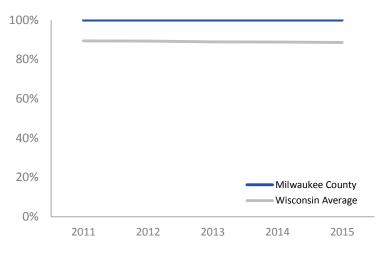
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

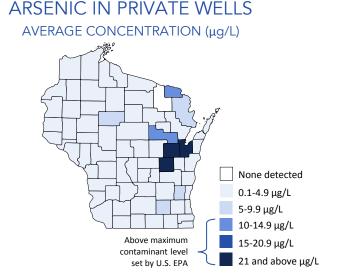

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

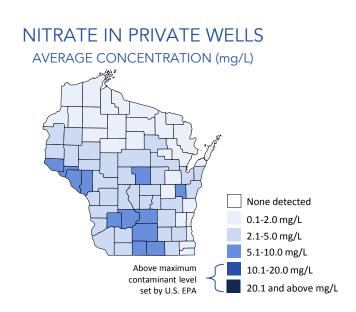
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

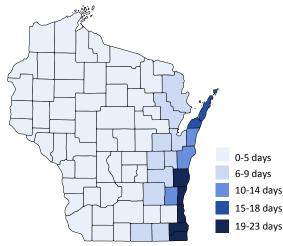
Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

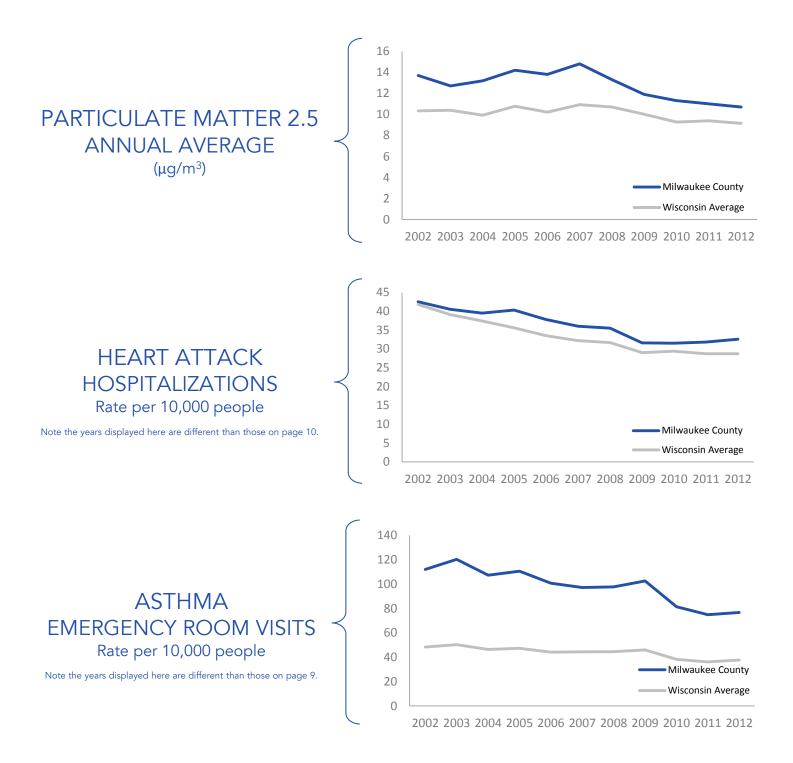
OZONE OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **10.7 PARTICULATE MATTER 2.5** ANNUAL AVERAGE (μg/m³)
 STATEWIDE: 9.1

4 Above state value
At or below state value
Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

MONROE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

MONROE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health WISCONSIN

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS MONROE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 10.2

CARBON MONOXIDE

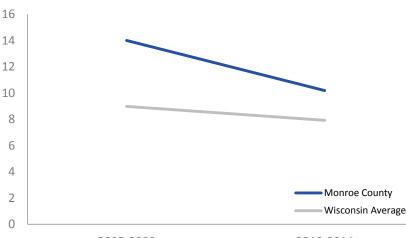
POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

• 2.8%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

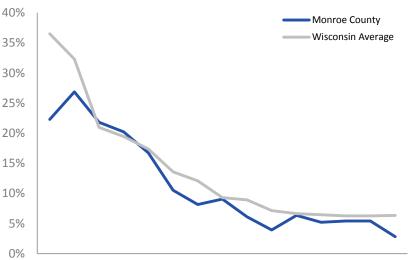
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

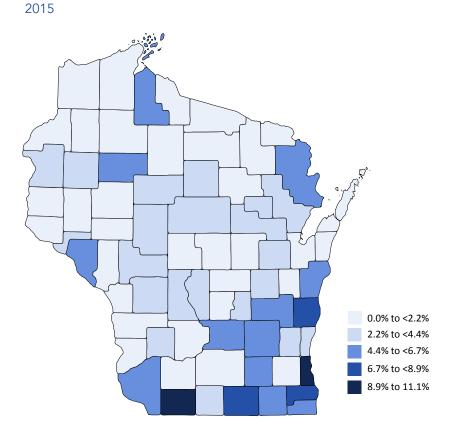
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

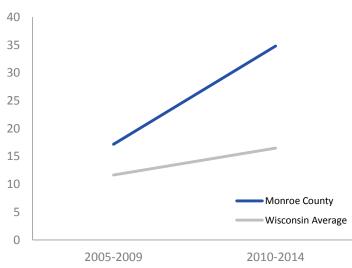
CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


Band Stress HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 28.5 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

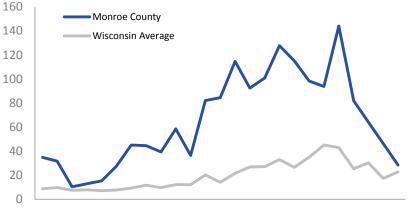
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

STATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

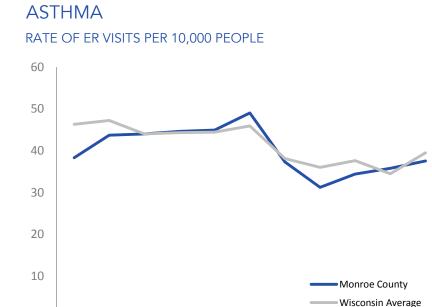
0

• 24.1

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 77.3

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 30.6
 HEART ATTACK
 RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

STATEWIDE: 27.4


Above state value
At or below state value
Suppressed

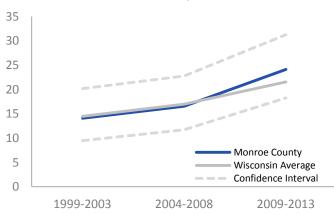
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

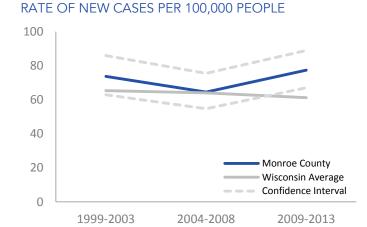
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

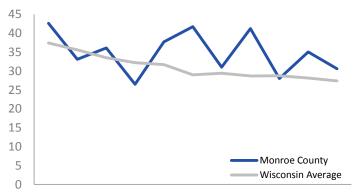
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L) STATEWIDE: 1.5

At or below state value (with exception

of fluoride where above state value is

preferred)

BACKGROUND

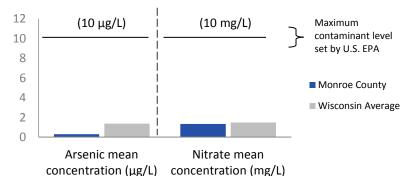
Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.


Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

> B 32.4% FLUORIDE PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

> > STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY MONROE COUNTY

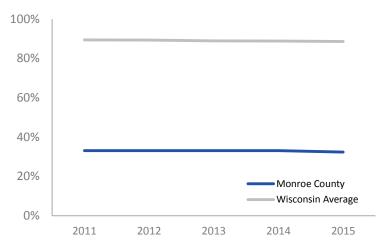
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

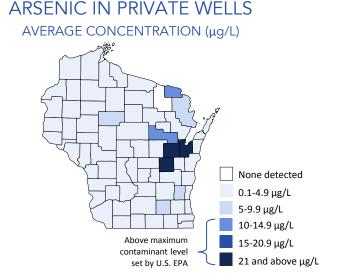

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

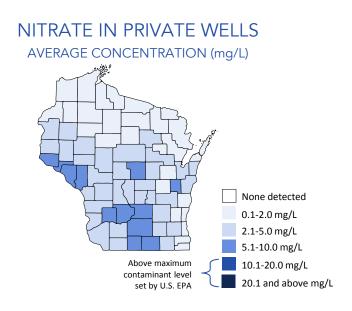
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



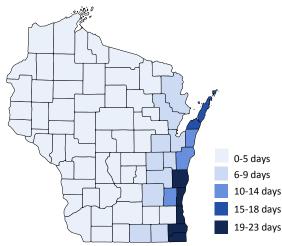

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

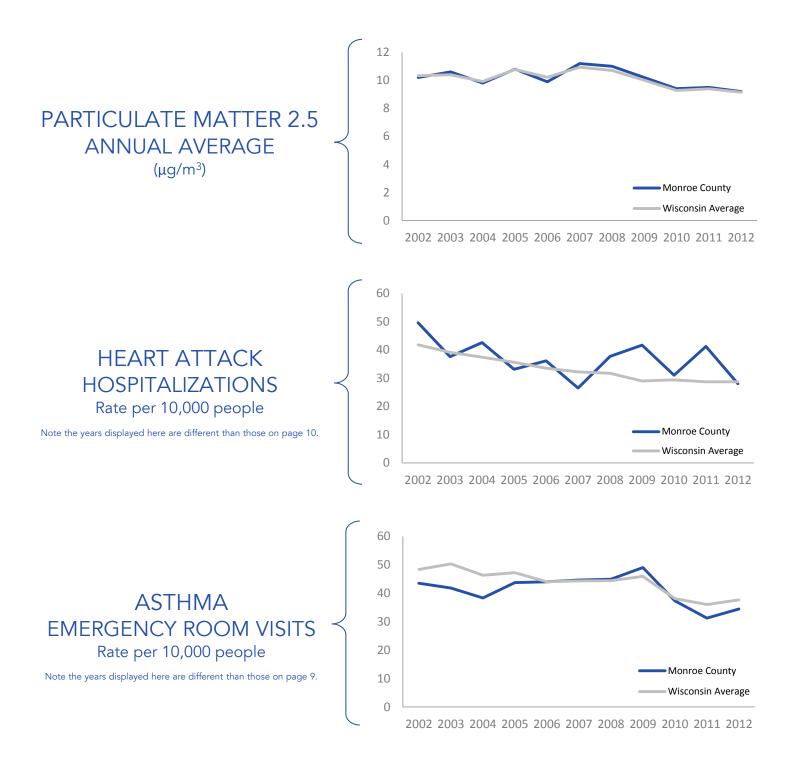
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 9.2
PARTICULATE MATTER 2.5
ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

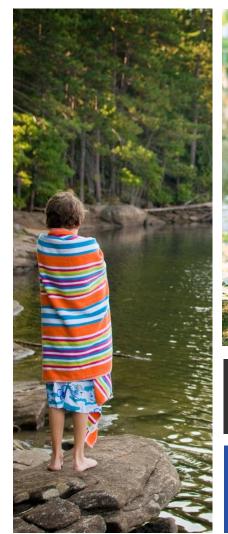
Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)



2017

OCONTO COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

OCONTO COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS OCONTO COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 7.6

CARBON MONOXIDE POISONING

RATE OF ER VISITS RELATED TO CO PER 100,000

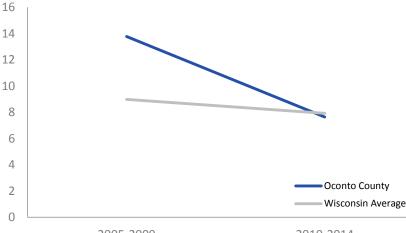
STATEWIDE: 7.9

• 2.6%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

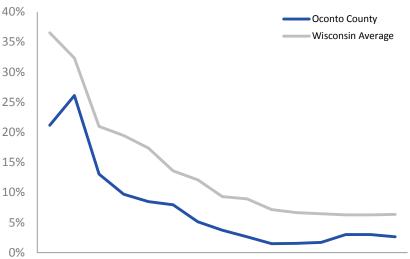
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

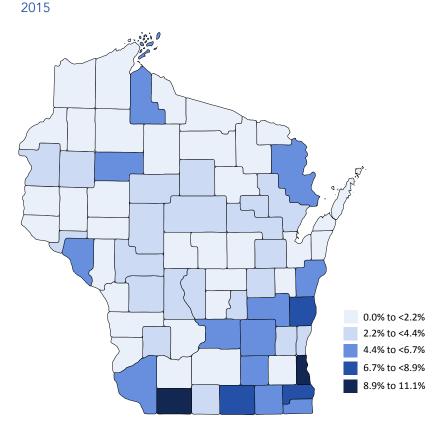
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

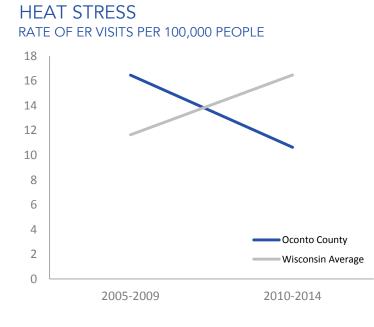
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

■ 10.6 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 34.7
LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

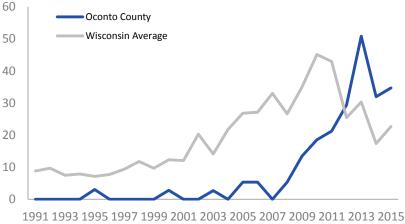
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

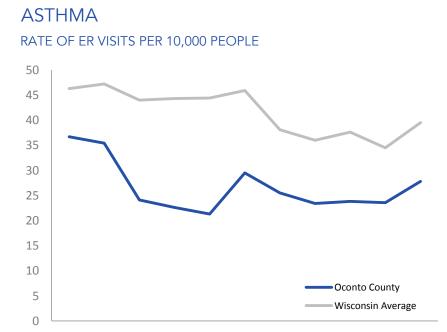
Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

• 24.2

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 76.5

RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • 26.8

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value
At or below state value
Suppressed

ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

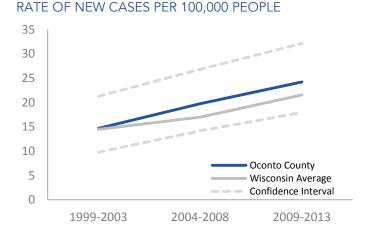
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

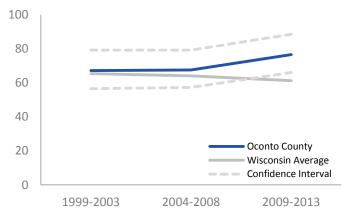
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 9

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

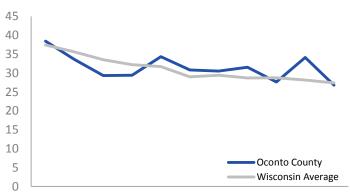
Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE


HEART ATTACK

A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L) STATEWIDE: 1.5

At or below state value (with exception

of fluoride where above state value is

preferred)

BACKGROUND

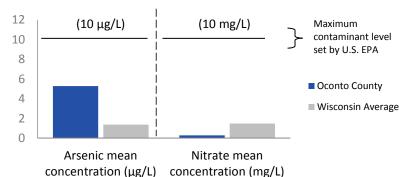
Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> S.3 ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.


Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

> PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

> > STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY OCONTO COUNTY

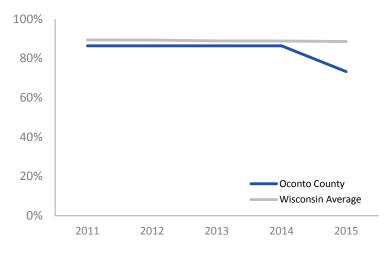
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

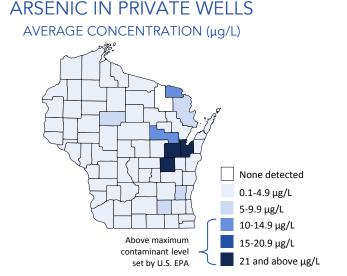

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

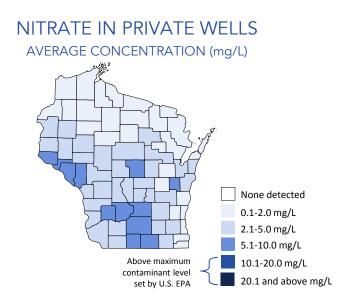
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

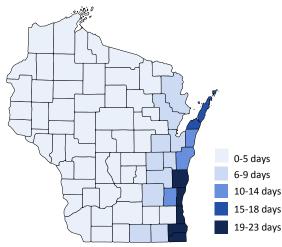
Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

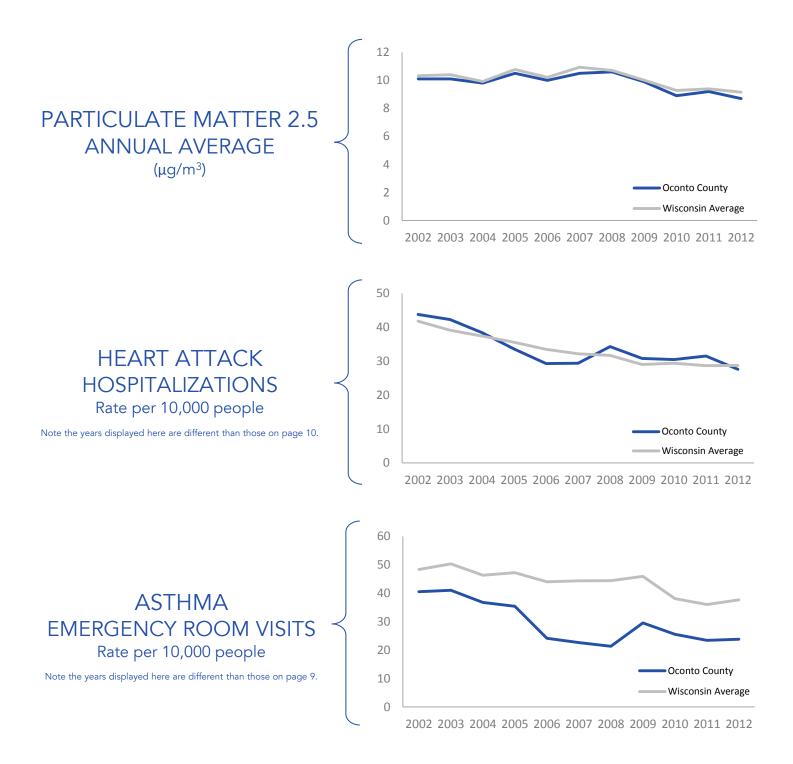
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 Ø 8.7
PARTICULATE MATTER 2.5
ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

ONEIDA COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

ONEIDA COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(HOME HAZARDS ONEIDA COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 4.2

CARBON MONOXIDE POISONING

RATE OF ER VISITS RELATED TO CO PER 100,000

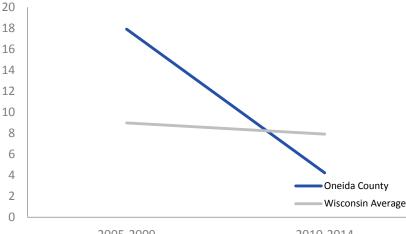
STATEWIDE: 7.9

• 0.8%

CHILDHOOD LEAD POISONING

 $\begin{array}{l} \mbox{PERCENT OF TESTED CHILDREN} \\ \mbox{WITH BLOOD LEAD} \geq 5 \ \mbox{\mug/dL} \end{array}$

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

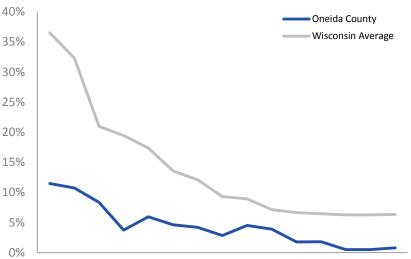
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

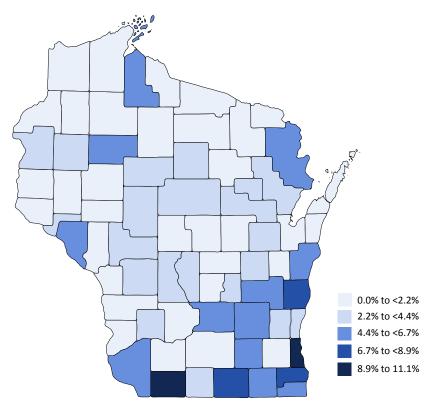
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING

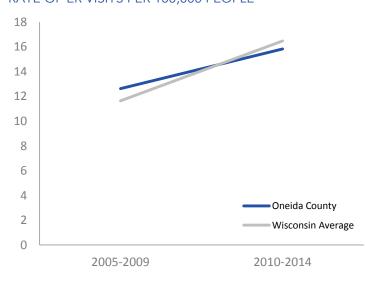
PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ${\geq}5~\mu\text{g/dL}$ 2015

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


■ 15.8 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 75.9 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value ^

^ Suppressed

HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE

HEAT STRESS

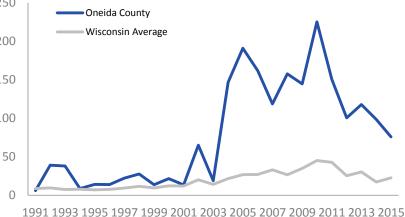
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infectedRAblack-legged tick (*Ixodes scapularis*) and is becoming250more common in Wisconsin. Lyme disease was the200fourth highest reported notifiable communicable200disease in 2015.201

The highest number of cases are typically reported ¹⁵⁰ in the northwestern region of Wisconsin, but in recent years cases have increased in the central and ¹⁰⁰ eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

STATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

0

14.0

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 78.2

RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • **25.8**

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

Above state value At or below state value Suppressed

ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

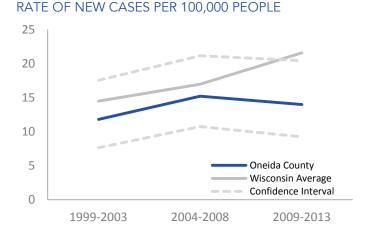
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

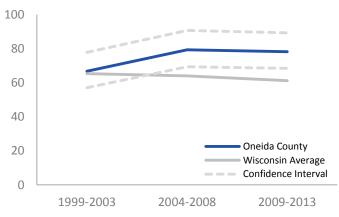
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Oneida County Wisconsin Average

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

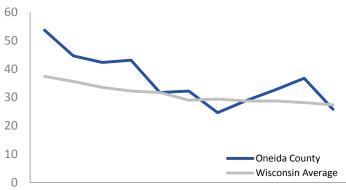
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L) STATEWIDE: 1.5

At or below state value (with exception

of fluoride where above state value is

preferred)

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

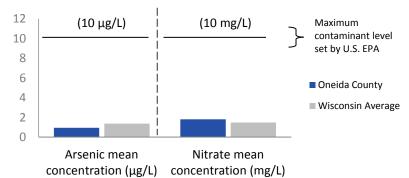
Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.


> FLUORIDE PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

67.1%

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY ONEIDA COUNTY

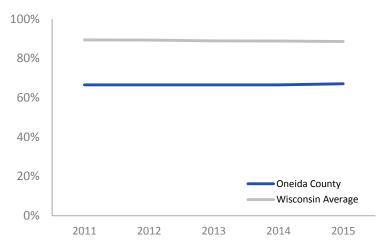
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

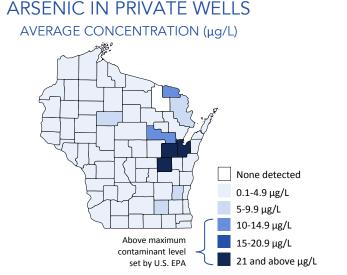

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

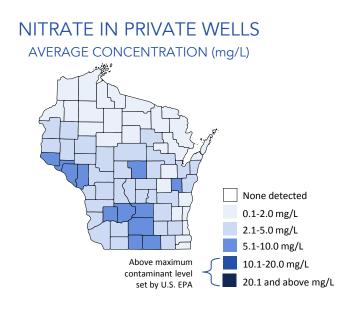
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

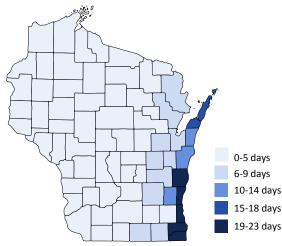
Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

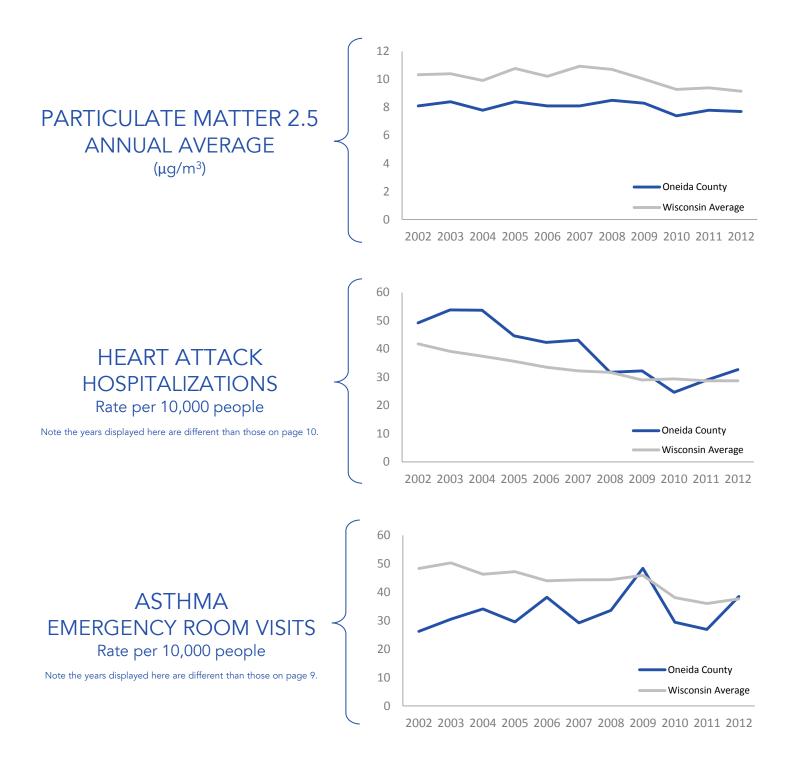
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **ORANTICULATE MATTER 2.5** ANNUAL AVERAGE (μg/m³) STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

OUTAGAMIE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

OUTAGAMIE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health WISCONSIN EPHT

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS OUTAGAMIE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 7.5

CARBON MONOXIDE POISONING

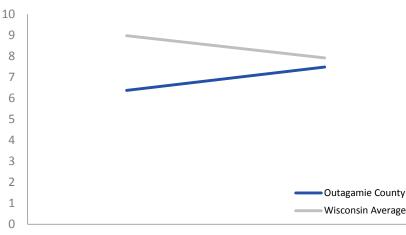
RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

• 3.1%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

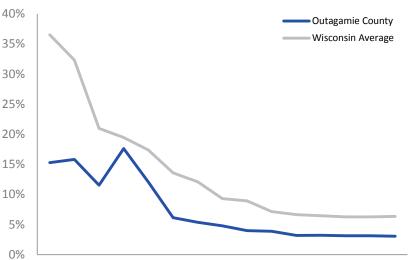
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

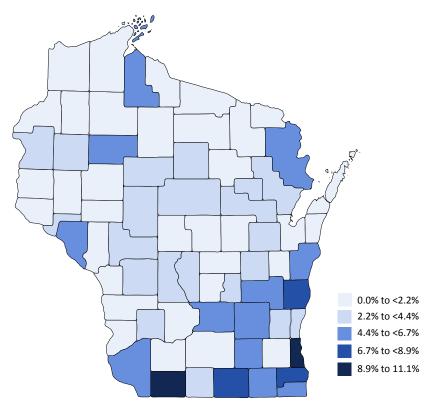
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

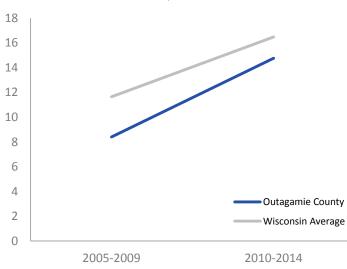
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ${\geq}5~\mu\text{g/dL}$ 2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

• 14.8 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 Above state value

At or below state value

^ Suppressed

HEAT STRESS

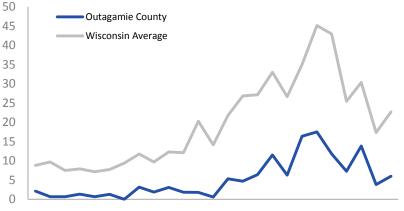
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

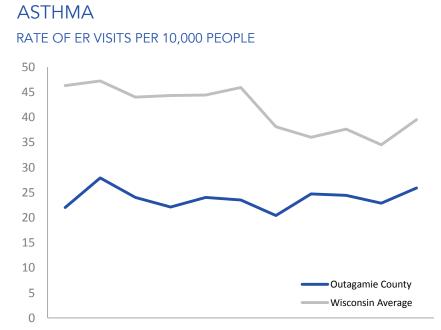
• 25.9 ASTHMA

RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

35.1

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • **54.8**

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 24.1


HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

ASTHMA

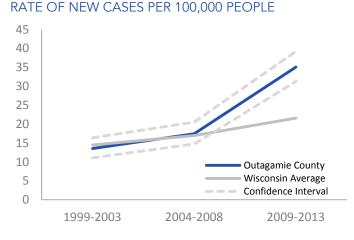
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

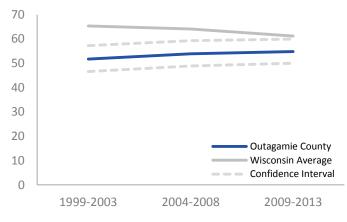
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

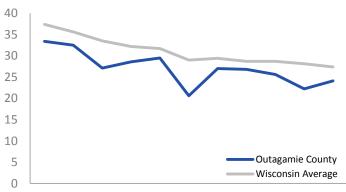

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

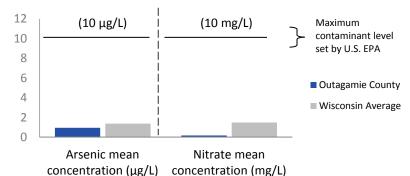
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 88.6%
FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY OUTAGAMIE COUNTY

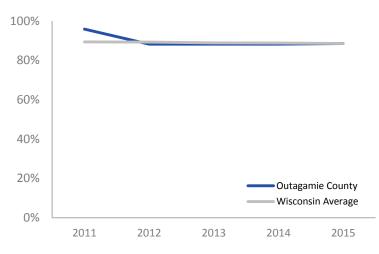
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

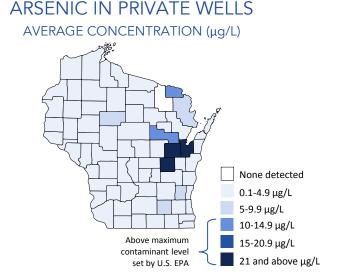

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

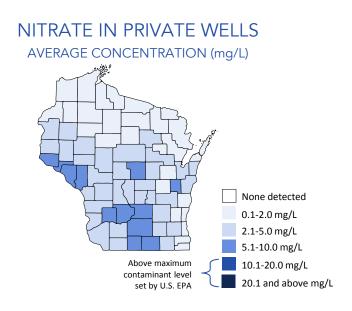
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



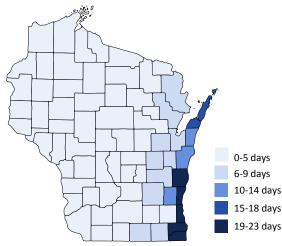

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

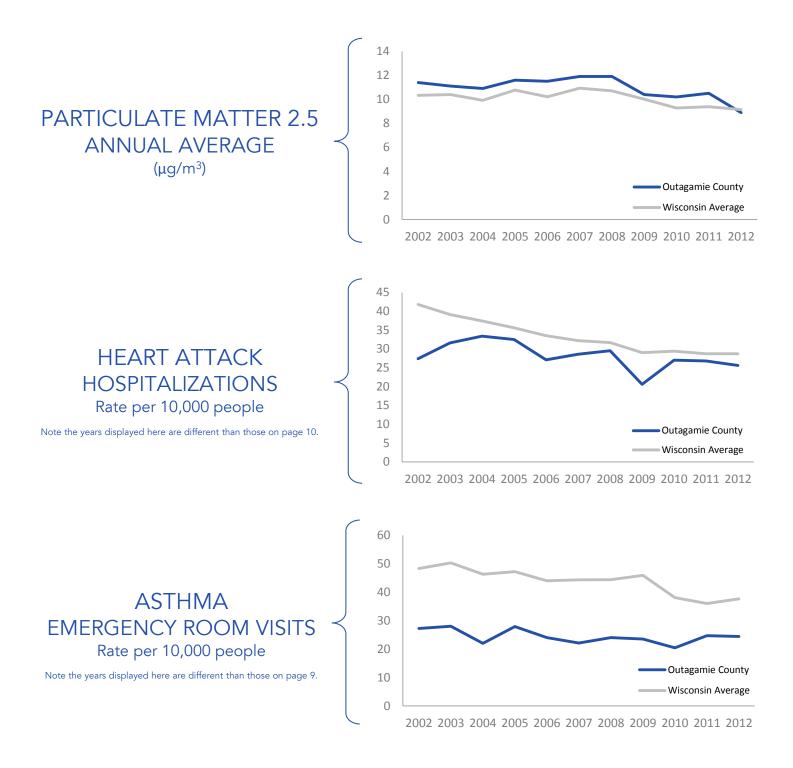
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **B.9 PARTICULATE MATTER 2.5** ANNUAL AVERAGE (μg/m³) STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

OZAUKEE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

OZAUKEE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS OZAUKEE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 3.6

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

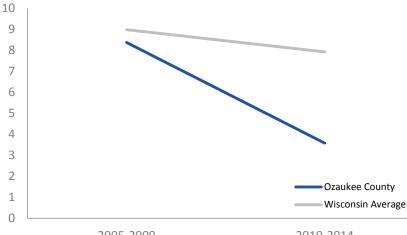
STATEWIDE: 7.9

• **3.6%**

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


^ Suppressed

Above state value

At or below state value

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

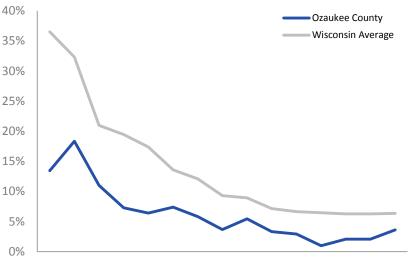
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

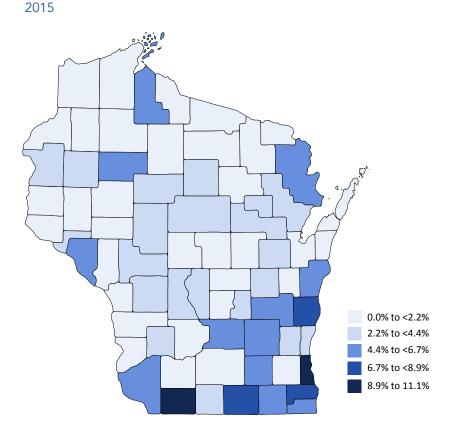
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

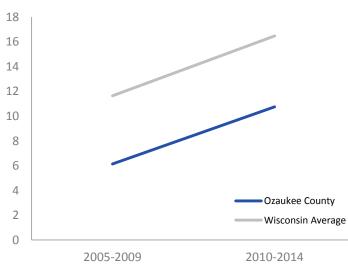
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

$\begin{array}{l} \mbox{CHILDHOOD LEAD POISONING} \\ \mbox{PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5 $ μg/dL} \end{array}$

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


■ 10.7 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 4.6 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

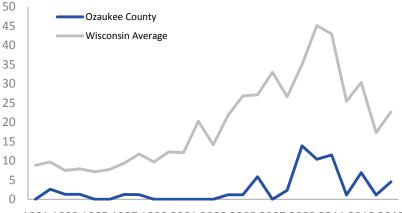
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

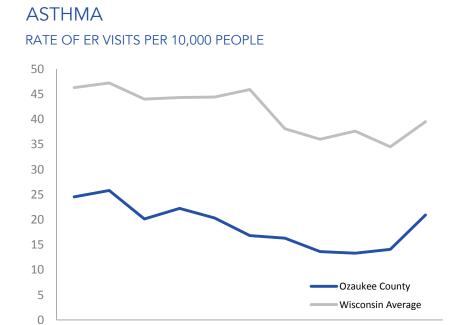
Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

20.9 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5 • 26.0

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 49.4 LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 24.0
 HEART ATTACK


RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

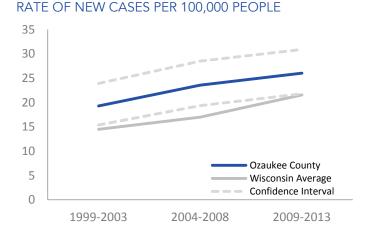
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

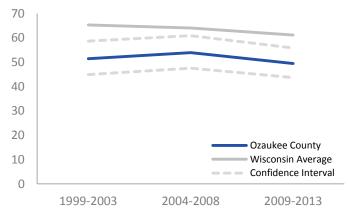
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

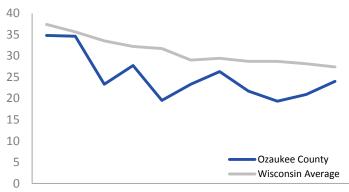

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred)

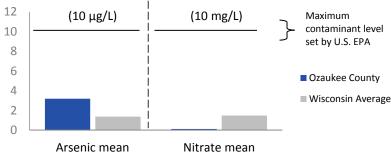
high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5

At or below state value (with exception of fluoride where above state value is preferred)


92.6% FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

concentration (μ g/L) concentration (mg/L)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. **Environmental Protection Agency.**

WATER QUALITY OZAUKEE COUNTY

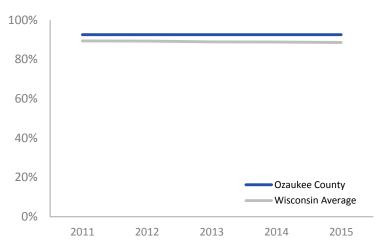
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

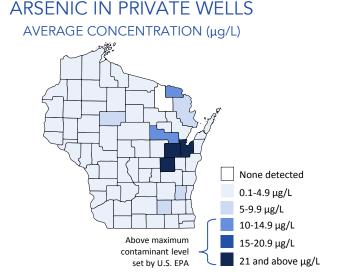

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

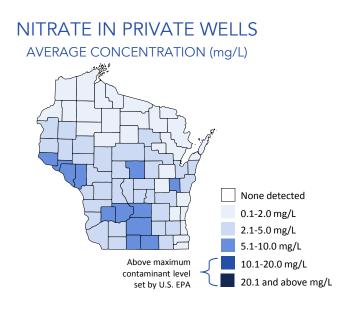
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

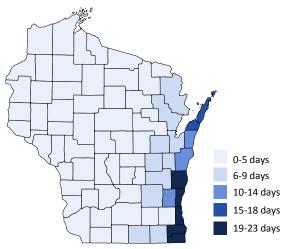
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3

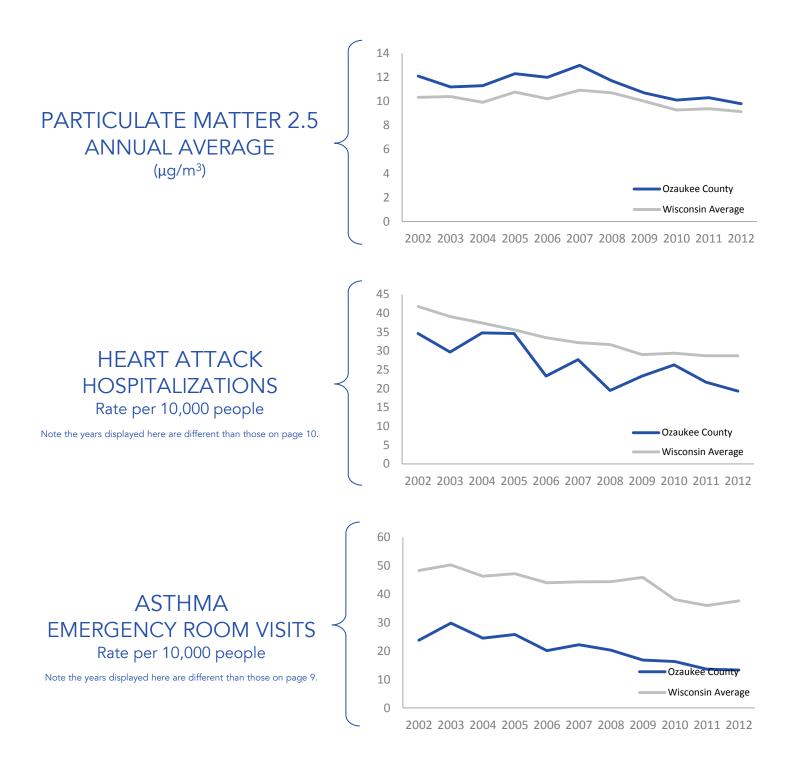
9.8 **PARTICULATE MATTER 2.5** ANNUAL AVERAGE (µg/m³) STATEWIDE: 9.1

At or below state value Above state value ^ Suppressed


OZONE

The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*


*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

PEPIN COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

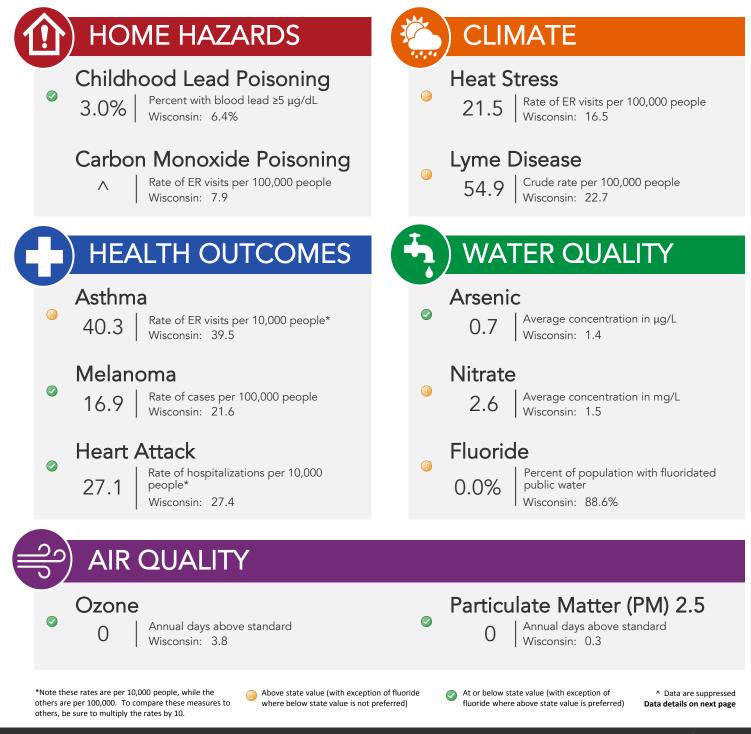
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

PEPIN COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(HOME HAZARDS PEPIN COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes. • 3.0%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%

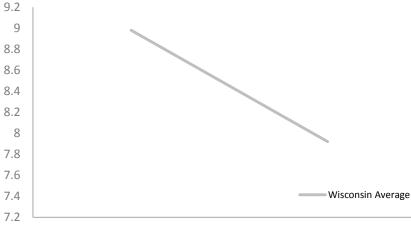
Above state value

CARBON MONOXIDE

POISONING

RATE OF ER VISITS

RELATED TO CO PER 100,000


STATEWIDE: 7.9

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

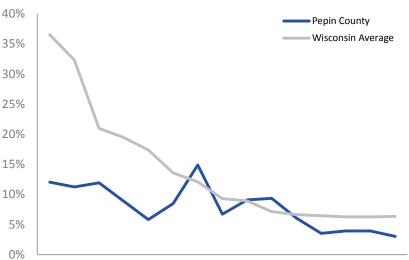
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

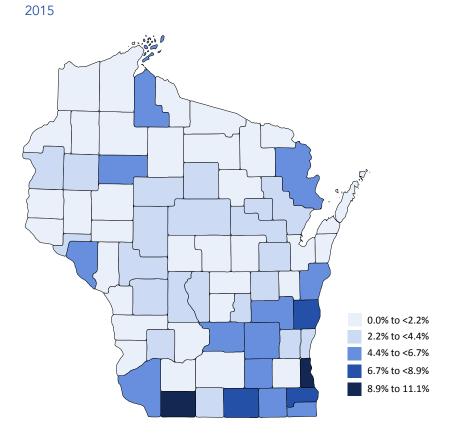
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

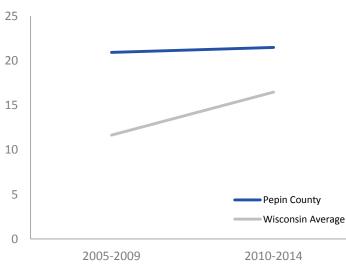
CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


21.5 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 54.9 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

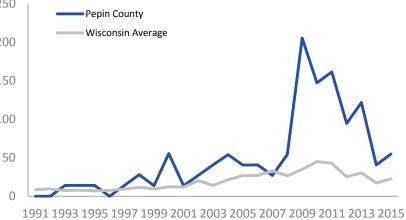
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infectedRAblack-legged tick (*Ixodes scapularis*) and is becoming250more common in Wisconsin. Lyme disease was the200fourth highest reported notifiable communicable200disease in 2015.200

The highest number of cases are typically reported ¹⁵⁰ in the northwestern region of Wisconsin, but in recent years cases have increased in the central and ¹⁰⁰ eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

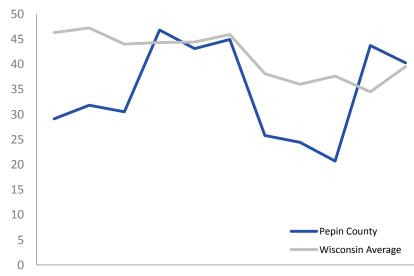
• 16.9

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 53.3

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 27.1
 HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

O Above state value At or below state value Suppressed


ASTHMA

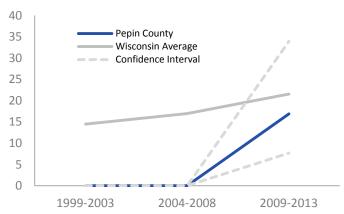
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

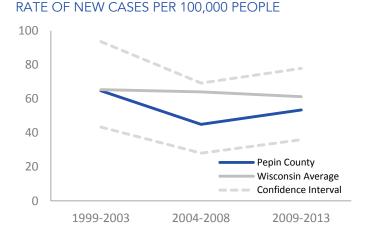
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

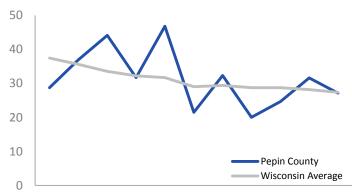
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

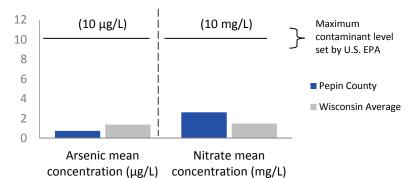
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

2.6 NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) O.0% FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY PEPIN COUNTY

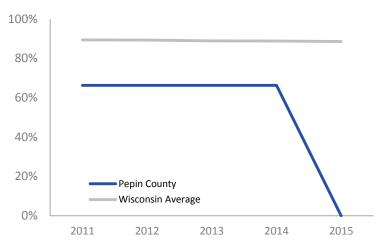
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

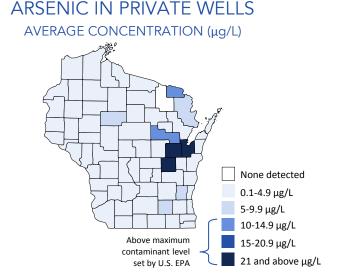

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

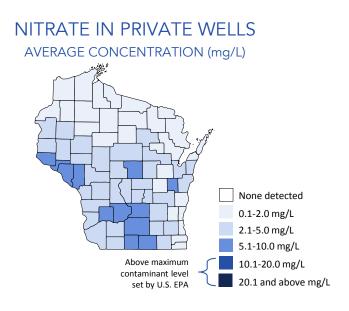
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



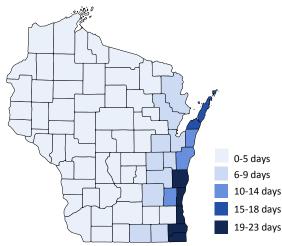

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

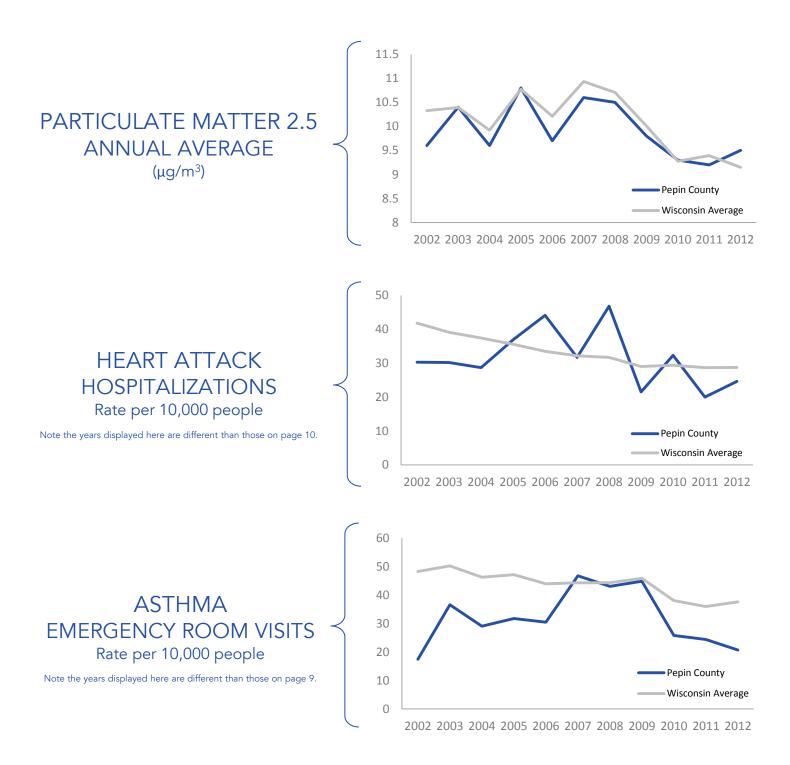
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 9.5
PARTICULATE MATTER 2.5
ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

PIERCE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

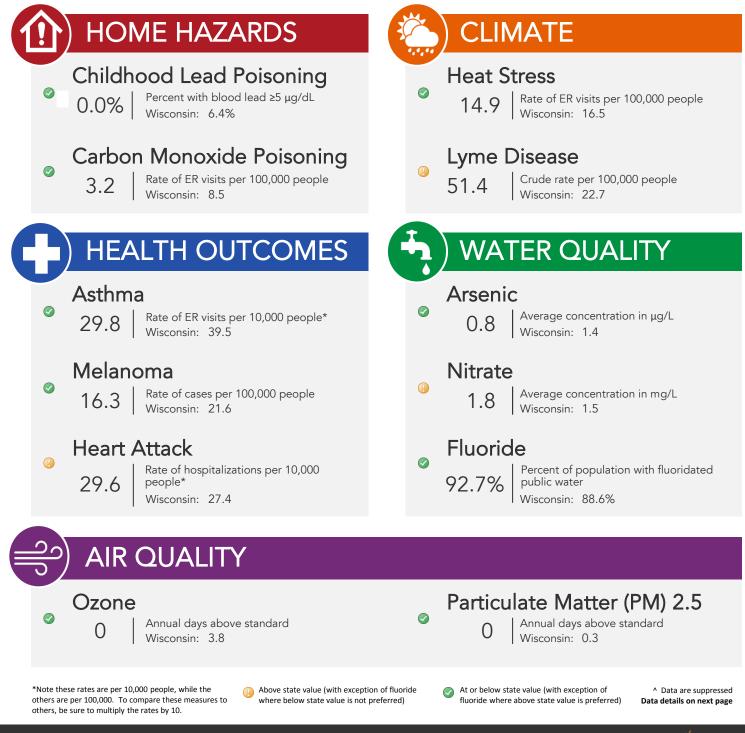
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

PIERCE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2005-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS PIERCE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 3.2

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

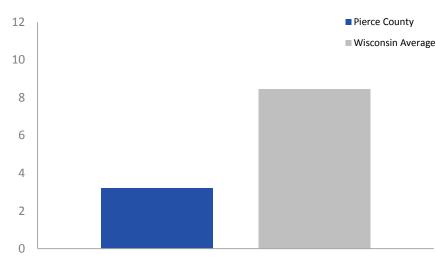
STATEWIDE: 8.5

• 0.0%

CHILDHOOD LEAD POISONING

 $\begin{array}{l} \mbox{PERCENT OF TESTED CHILDREN} \\ \mbox{WITH BLOOD LEAD} \geq 5 \ \mbox{\mug/dL} \end{array}$

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE (2005-2014)

CARBON MONOXIDE POISONING

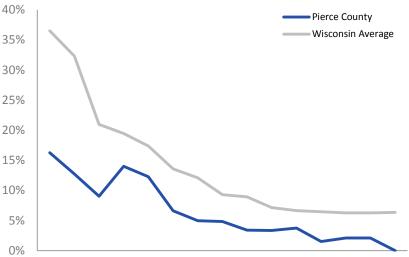
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

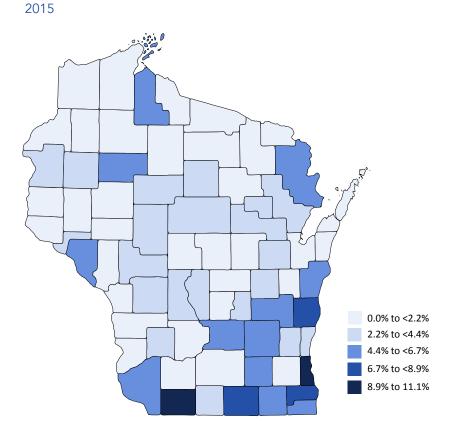
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

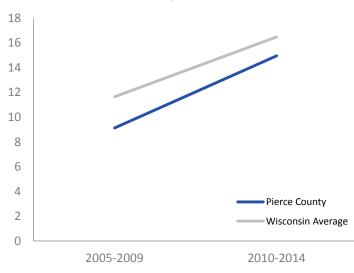
CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


• 14.9 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 51.4 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

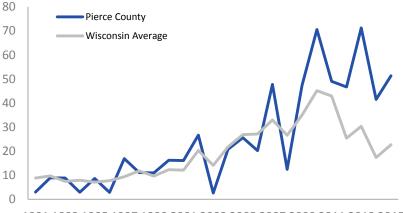
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

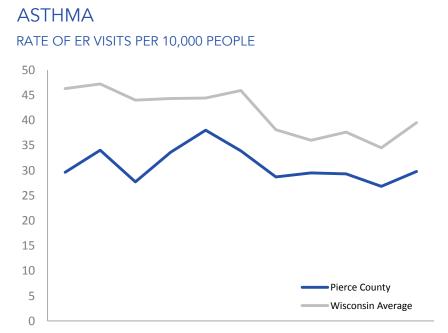
29.8 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 16.3

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 37.6

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 29.6 HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value At or below state value Suppressed

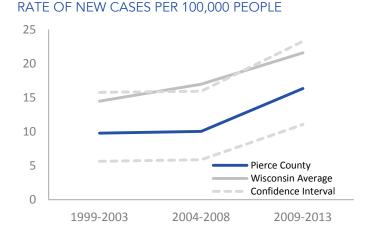
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

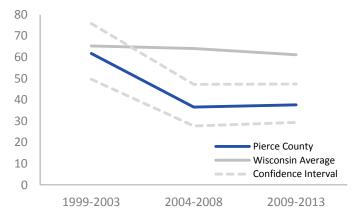
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

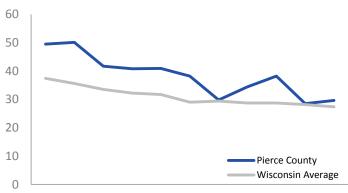

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L) STATEWIDE: 1.5

At or below state value (with exception

of fluoride where above state value is

preferred)

BACKGROUND

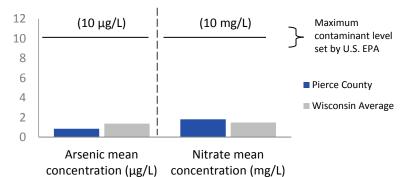
Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.


Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

> • 92.7% FLUORIDE PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

> > STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

> DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 11

WATER QUALITY PIERCE COUNTY

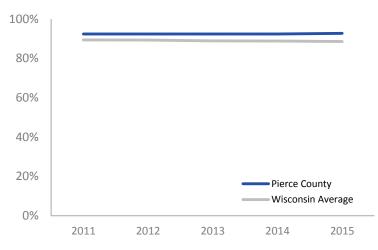
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

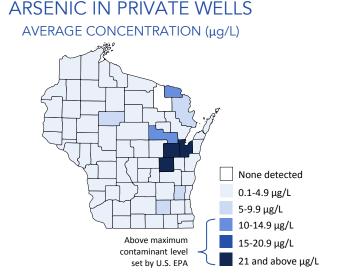

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

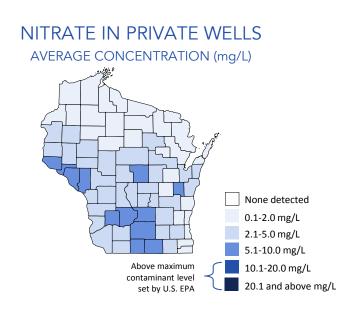
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 (PM_{2.5})" refers to the size of the particles, which are smaller than the width of a human hair.

Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

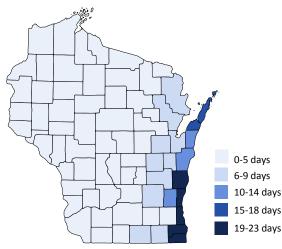
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3

10.1 **PARTICULATE MATTER 2.5** ANNUAL AVERAGE (µg/m³) STATEWIDE: 9.1

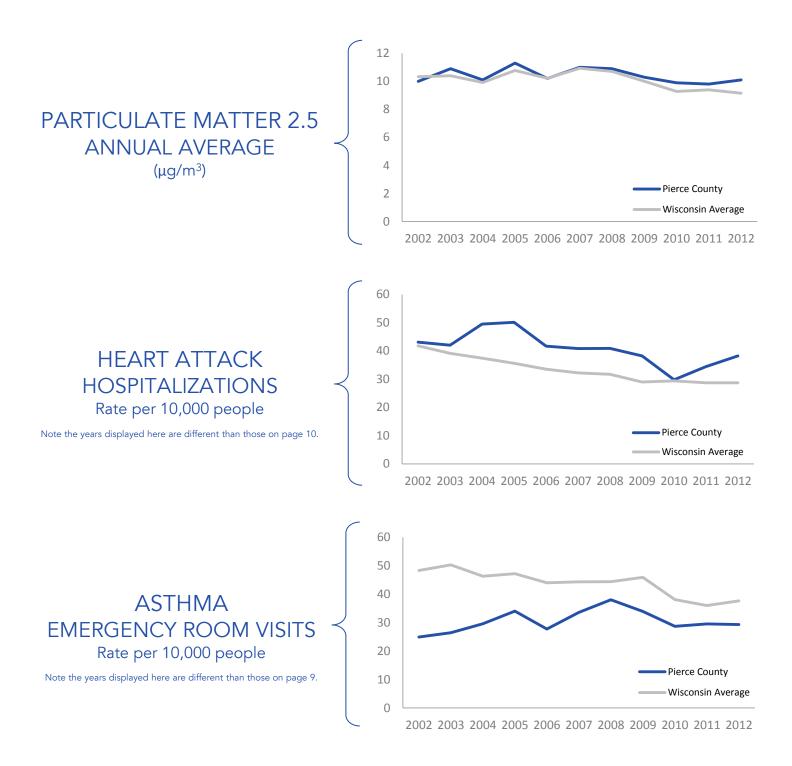
At or below state value Above state value ^ Suppressed

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.


DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 13

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level $\geq 5 \ \mu g/dL$

Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: Averaged data from 2005-2014

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 ,E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population. These data were averaged over ten years for five counties in order to minimize supression.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

POLK COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

POLK COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

HOME HAZARDS POLK COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

10.4

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

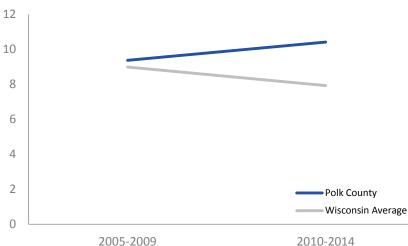
STATEWIDE: 7.9

2.2%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

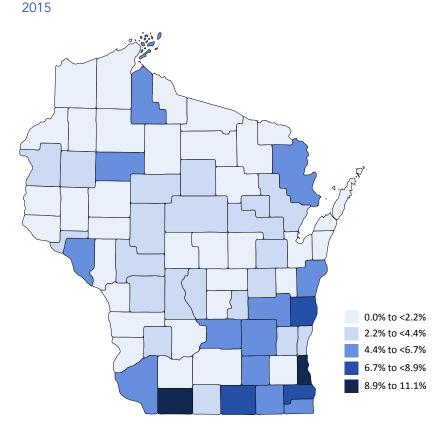
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.

Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

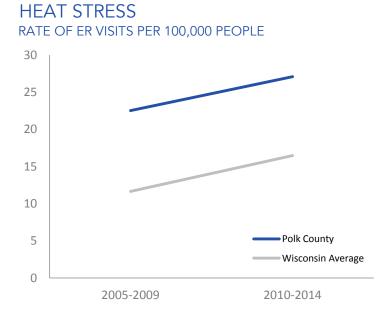
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

27.1 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 69.1 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

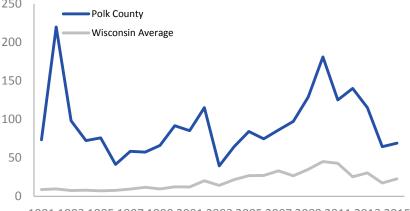
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infectedRAblack-legged tick (*Ixodes scapularis*) and is becoming250more common in Wisconsin. Lyme disease was the200fourth highest reported notifiable communicable200disease in 2015.200

The highest number of cases are typically reported ¹⁵⁰ in the northwestern region of Wisconsin, but in recent years cases have increased in the central and ¹⁰⁰ eastern regions.

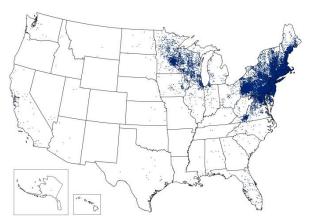
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

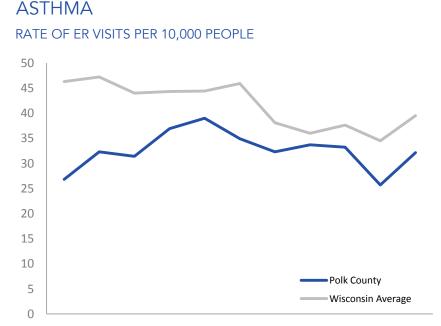
STATEWIDE: 39.5
STATEWIDE: 39.5

• 13.3

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 52.2 LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE

STATEWIDE: 61.1

31.4 HEART ATTACK RATE OF HOSPITALIZATIONS
 PER 10,000 PEOPLE
 STATEWIDE: 27.4


Above state value At or below state value Suppressed

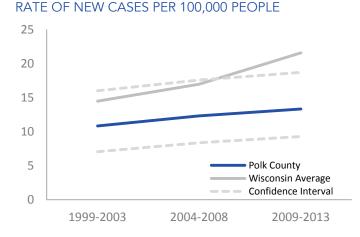
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

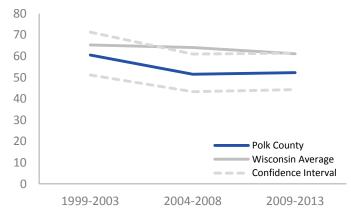
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

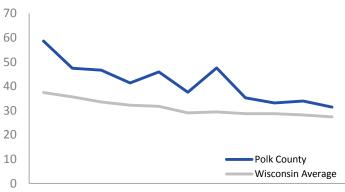

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L) STATEWIDE: 1.5

At or below state value (with exception

of fluoride where above state value is

preferred)

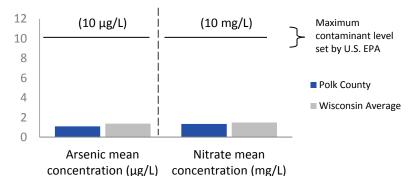
BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)


STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) 64.2%
FLUORIDE
PERCENT OF POPULATION WITH
FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY POLK COUNTY

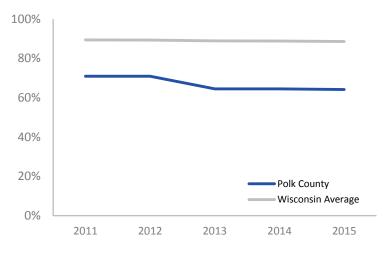
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

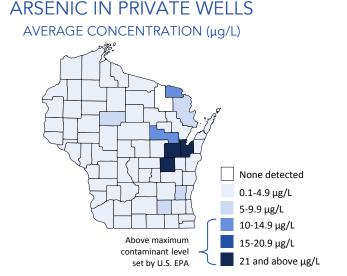

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

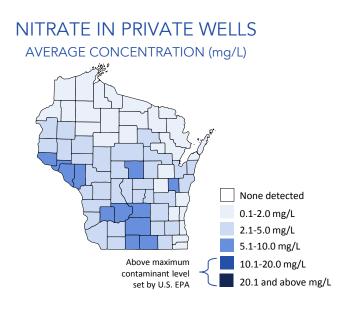
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

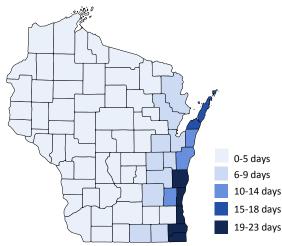
Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

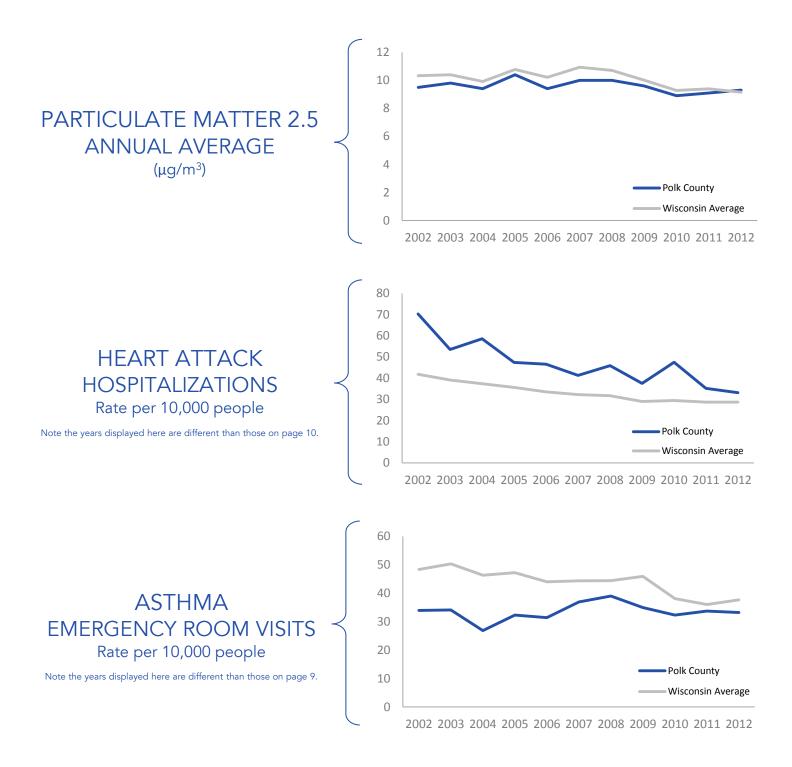
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **9.3 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

PORTAGE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

PORTAGE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS PORTAGE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 6.7

CARBON MONOXIDE POISONING

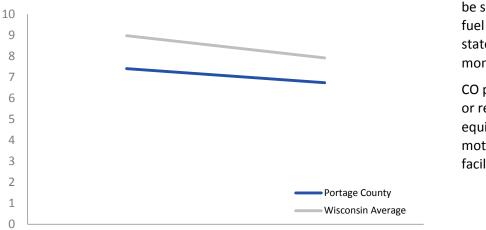
RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

• 1.3%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

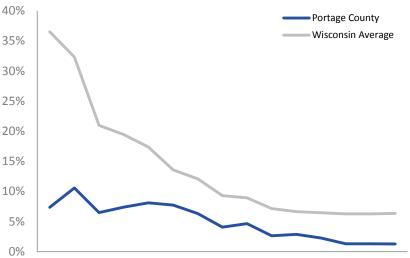
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

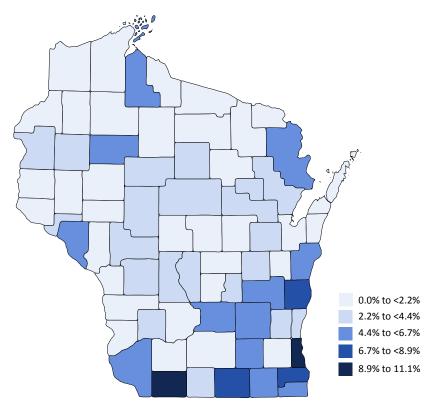
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

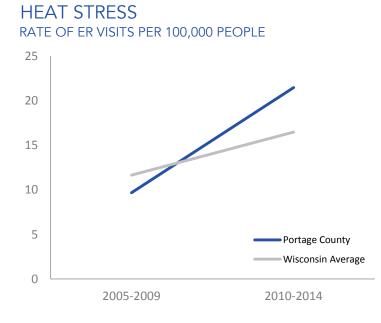
CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ${\geq}5~\mu\text{g/dL}$ 2015

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

21.5 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 Solution 56.8
LYME DISEASE
RATE OF CASES
PER 100,000 PEOPLE
STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

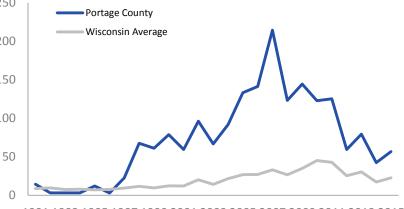
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infectedRAblack-legged tick (*Ixodes scapularis*) and is becoming250more common in Wisconsin. Lyme disease was the200fourth highest reported notifiable communicable200disease in 2015.200

The highest number of cases are typically reported ¹⁵⁰ in the northwestern region of Wisconsin, but in recent years cases have increased in the central and ¹⁰⁰ eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

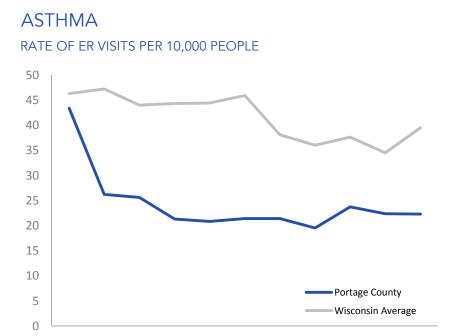
• 222.3 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 23.2

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • **54.3**

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 **38.1** HEART ATTACK
RATE OF HOSPITALIZATIO

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


) Above state value 🛛 🥑 At or below state value 🔹 ^ Suppressed

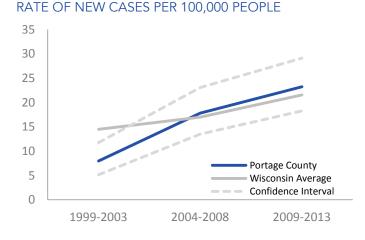
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

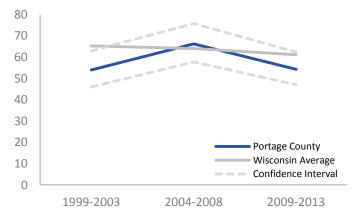
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

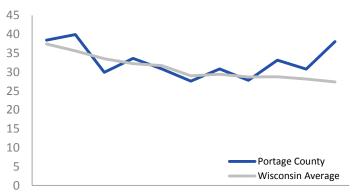

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

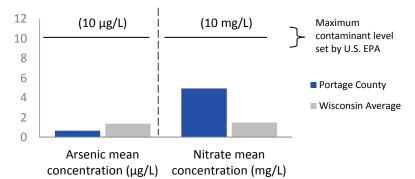
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) • 94.3%

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY PORTAGE COUNTY

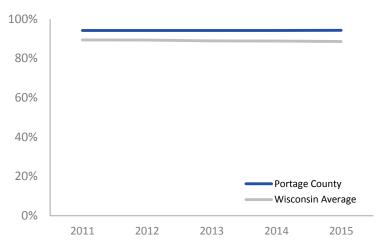
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

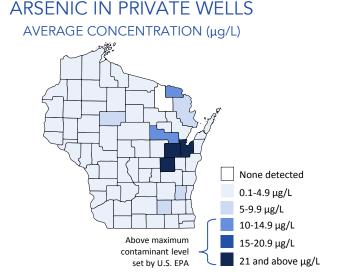

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

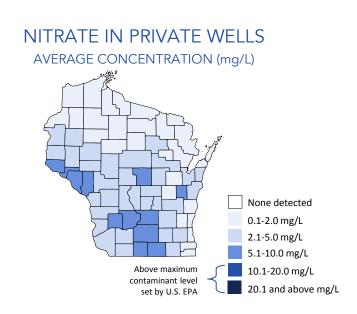
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



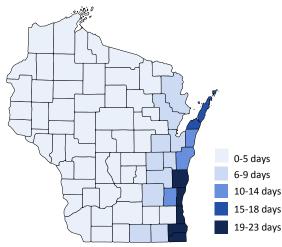

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

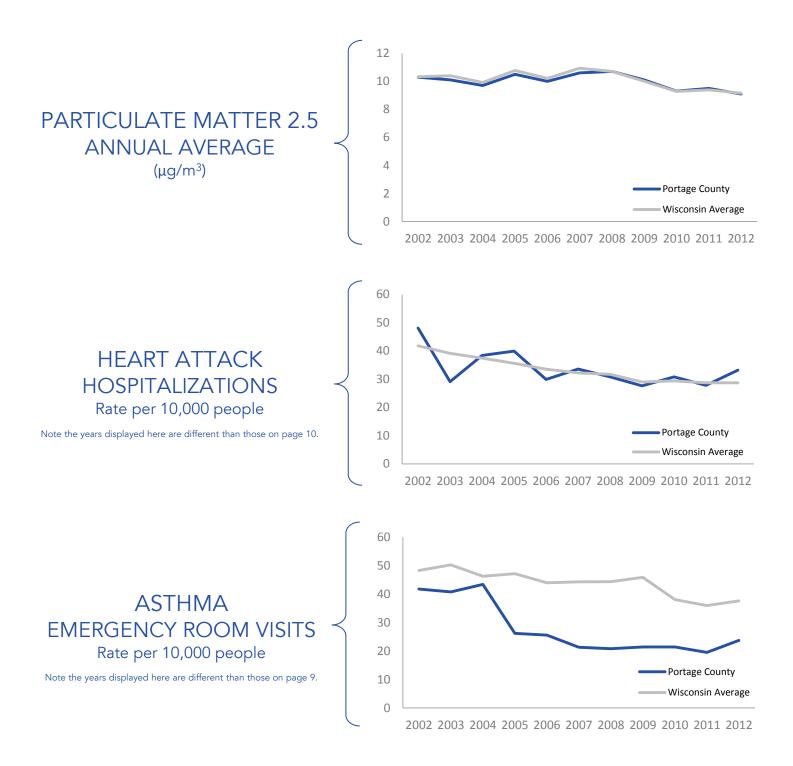
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 PARTICULATE MATTER 2.5 ANNUAL AVERAGE (µg/m³) STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

PRICE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

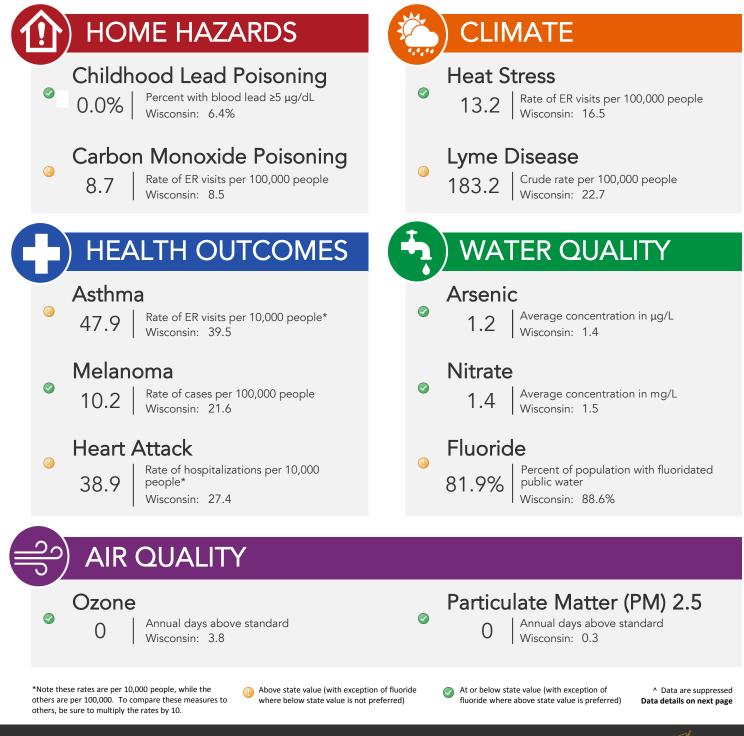
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

PRICE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health WISCONSIN

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2005-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS PRICE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 8.7

CARBON MONOXIDE

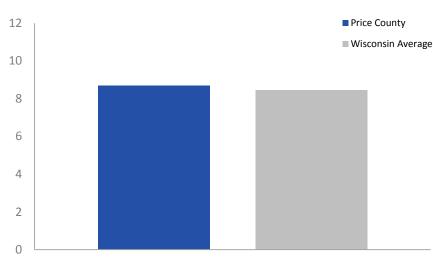
POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 8.5

• 0.0%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE (2005-2014)

CARBON MONOXIDE POISONING

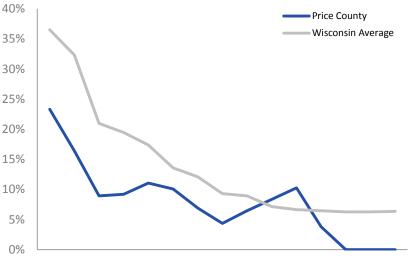
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

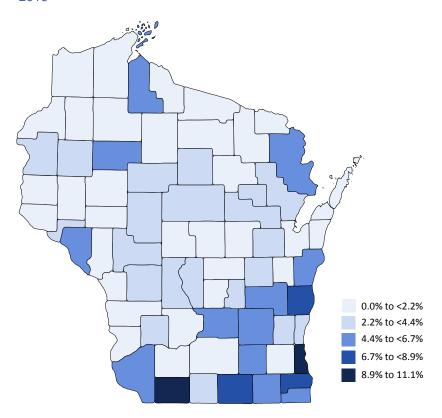
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

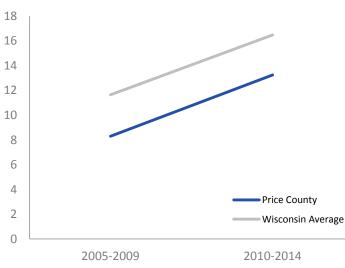
CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL 2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

■ 13.2 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 183.2 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE


STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

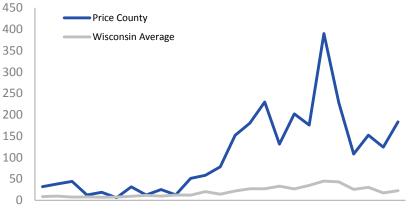
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

• 47.9 ASTHMA RATE OF ER VISITS

> PER 10,000 PEOPLE STATEWIDE: 39.5

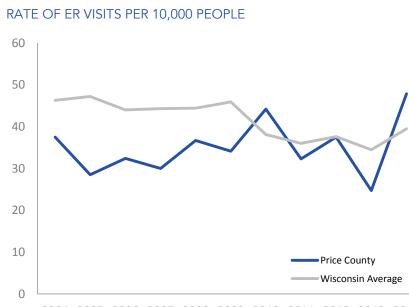
ASTHMA

• 10.2

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 58.0

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • **38.9** HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value 💿 At or below state value ^ Suppressed

ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

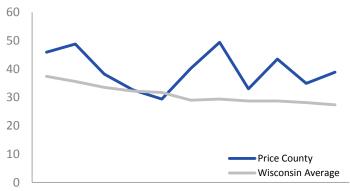
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

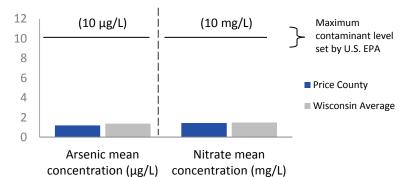
STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 81.9% FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY PRICE COUNTY

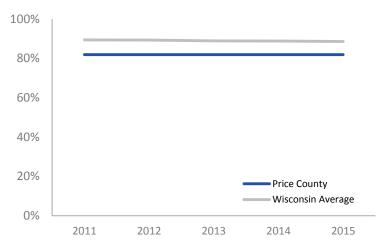
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

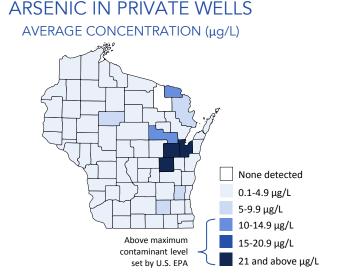

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

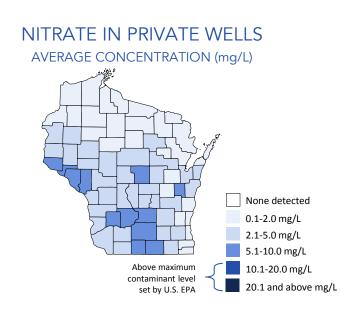
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



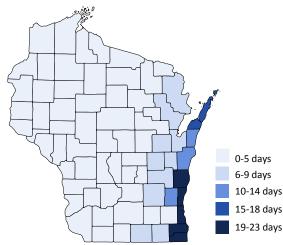

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

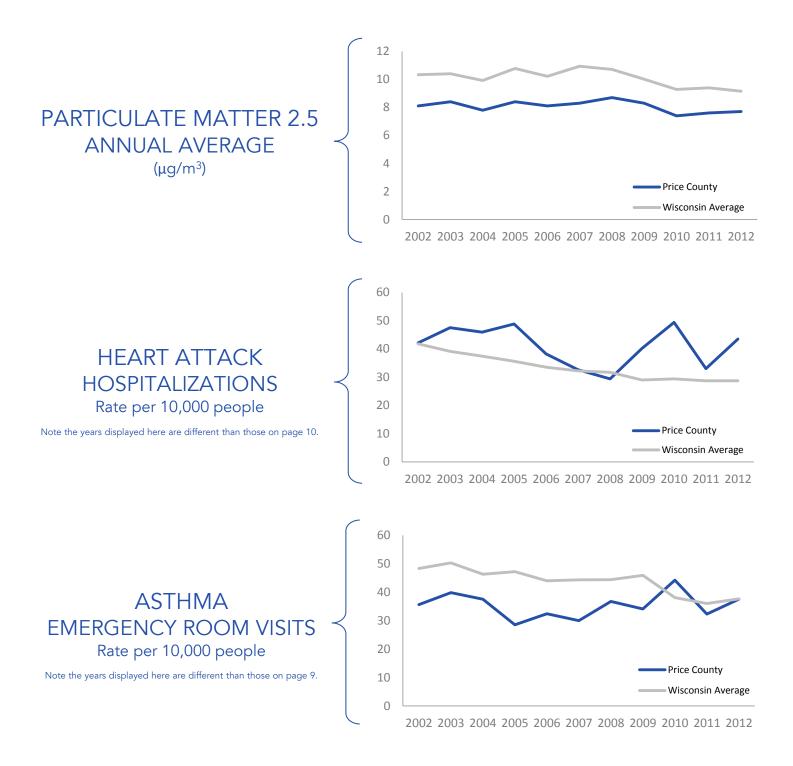
PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **ORANTICULATE MATTER 2.5** ANNUAL AVERAGE (μg/m³) STATEWIDE: 9.1

4 Above state value At or below state value Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE

The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.


Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

14 | Wisconsin Environmental Public Health Tracking

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level $\geq 5 \ \mu g/dL$

Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: Averaged data from 2005-2014

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 ,E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population. These data were averaged over ten years for five counties in order to minimize supression.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

RACINE COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

RACINE COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

HOME HAZARDS RACINE COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

9.3

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

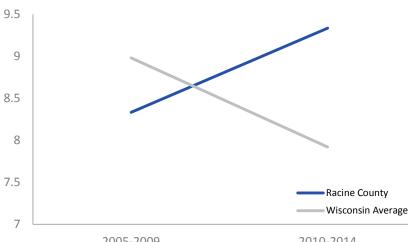
STATEWIDE: 7.9

7.3%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

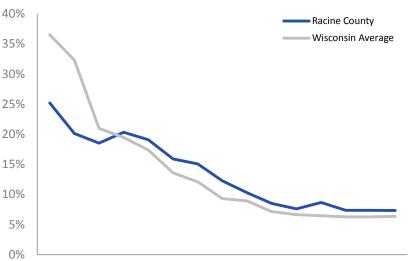
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

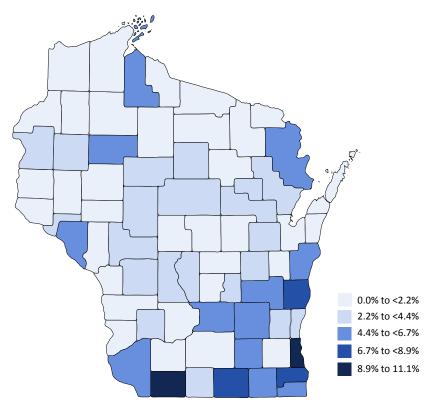
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

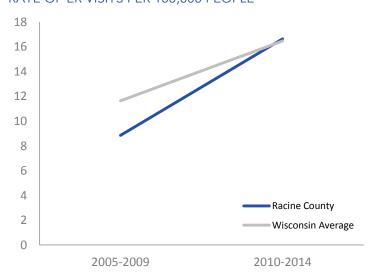
CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ${\geq}5~\mu\text{g/dL}$ 2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


I 16.6 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 STATE WIDE: 22.7
STATE WIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

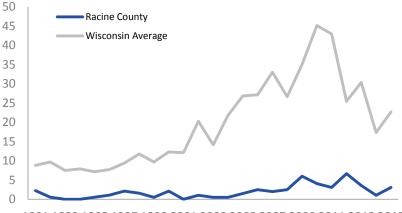
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

45.9 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE

STATEWIDE: 39.5

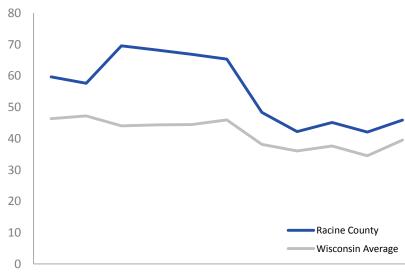
• 14.4

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 69.5

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • 28.6

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

4 Above state value
At or below state value
At or below state value


ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

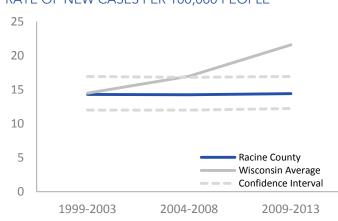
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 9

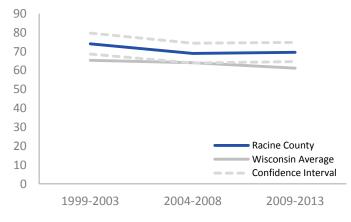
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.


Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

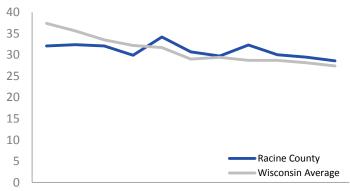
MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

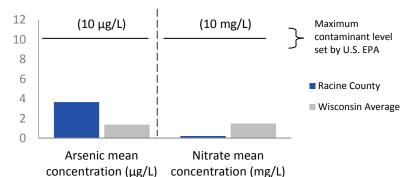
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 89.7% FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY RACINE COUNTY

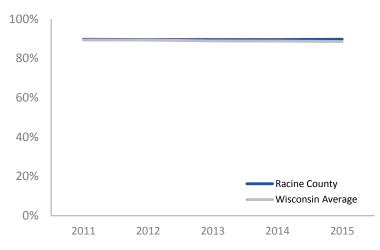
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

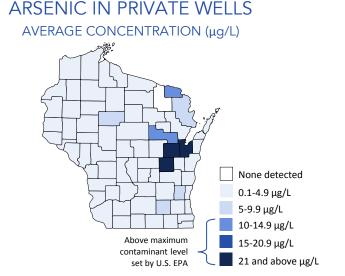

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

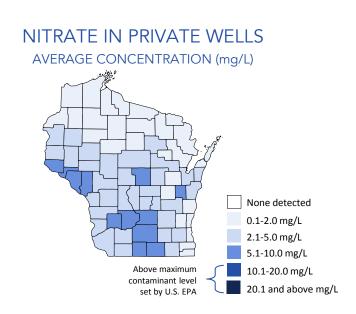
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



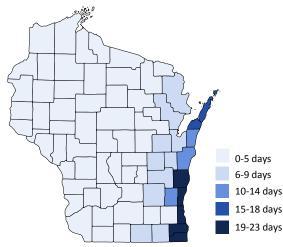

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

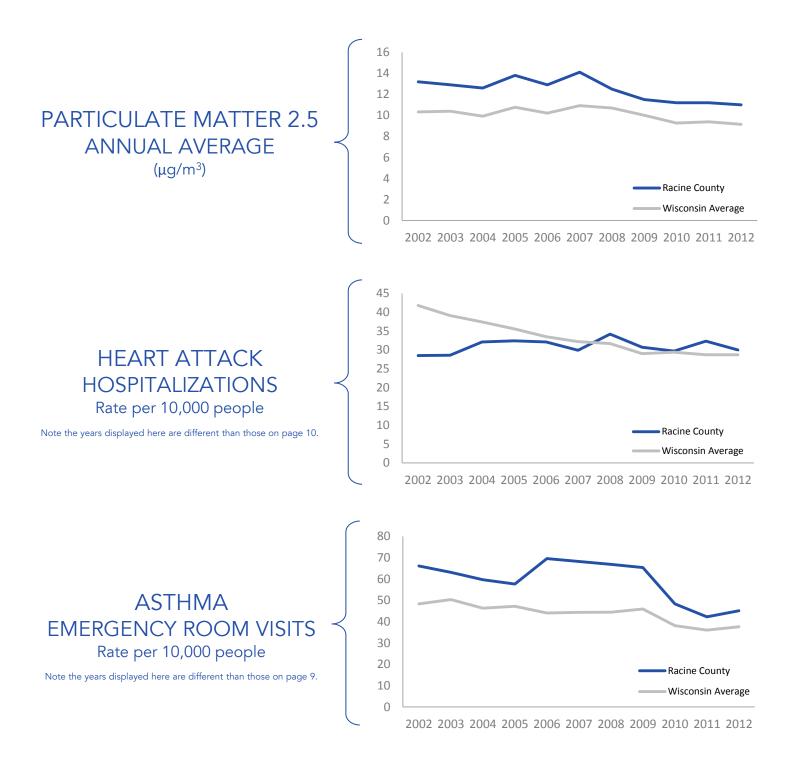
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **11.0 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

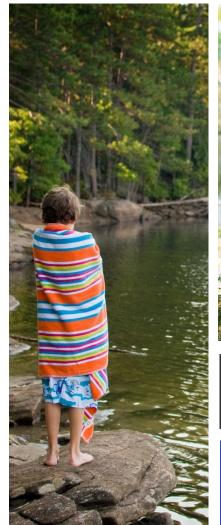
Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)



2017

RICHLAND COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

RICHLAND COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(HOME HAZARDS RICHLAND COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 10.3

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

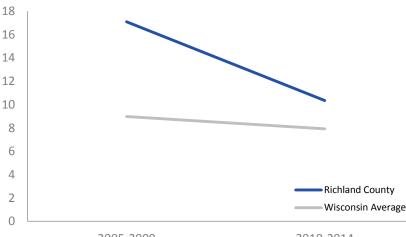
STATEWIDE: 7.9

• 4.0%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

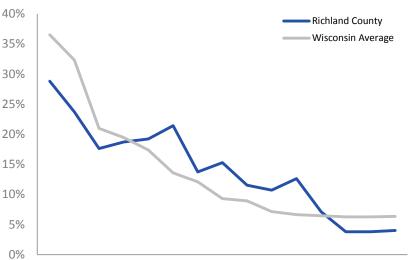
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

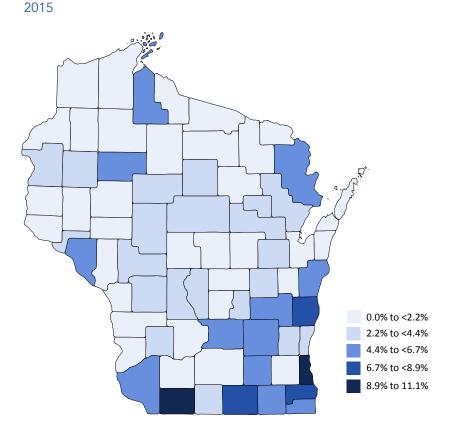
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

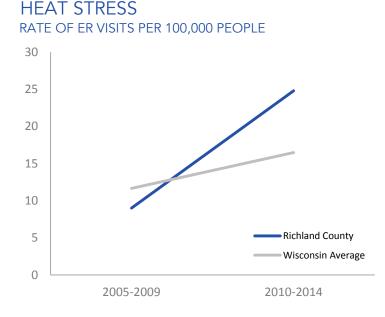
PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>. • 24.8 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 171.5 LYME DISEASE RATE OF CASES

PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

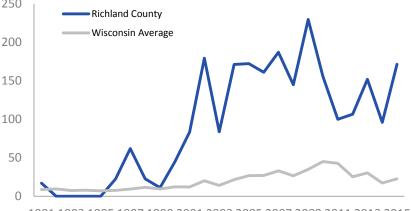
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infectedRAblack-legged tick (*Ixodes scapularis*) and is becoming250more common in Wisconsin. Lyme disease was the200fourth highest reported notifiable communicable200disease in 2015.200

The highest number of cases are typically reported ¹⁵⁰ in the northwestern region of Wisconsin, but in recent years cases have increased in the central and ¹⁰⁰ eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

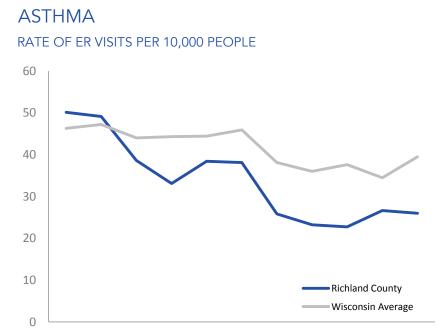
26.0
ASTHMA
RATE OF ER VISITS
PER 10,000 PEOPLE
STATEWIDE: 39.5

• 12.2

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 57.8

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • 26.2

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value
At or below state value
Suppressed

ASTHMA

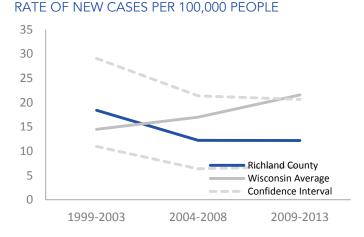
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

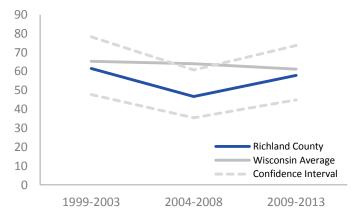
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

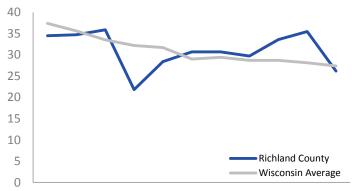

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> O.4 ARSENIC
> AVERAGE CONCENTRATION IN PUBLIC WATER (μg/L)

STATEWIDE: 1.4

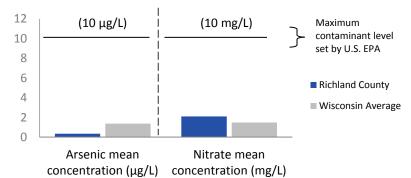
 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

2.1
 NITRATE

AVERAGE CONCENTRATION
IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 85.8%
FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY RICHLAND COUNTY

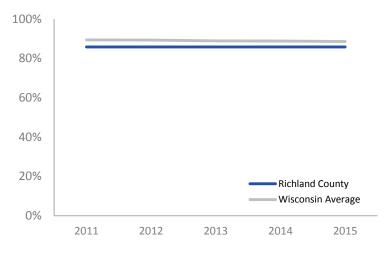
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

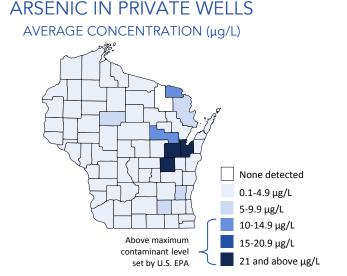

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

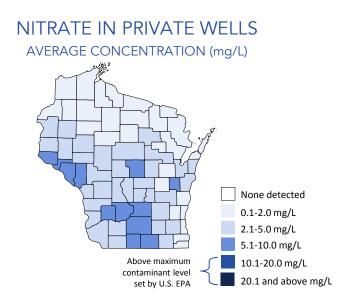
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



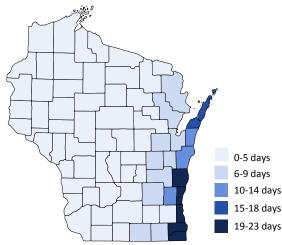

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

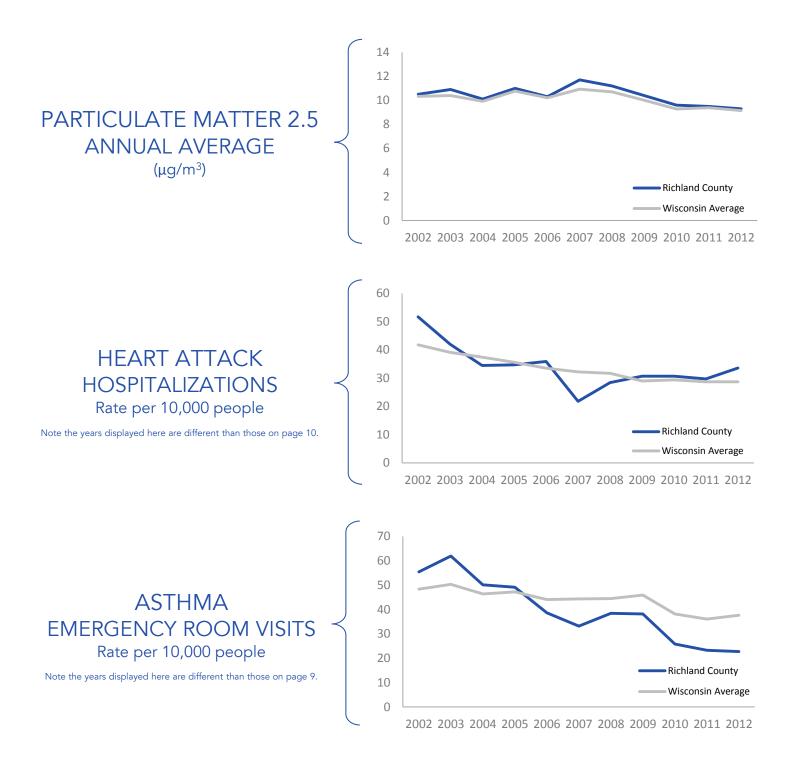
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **9.3 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

4 Above state value At or below state value Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

ROCK COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

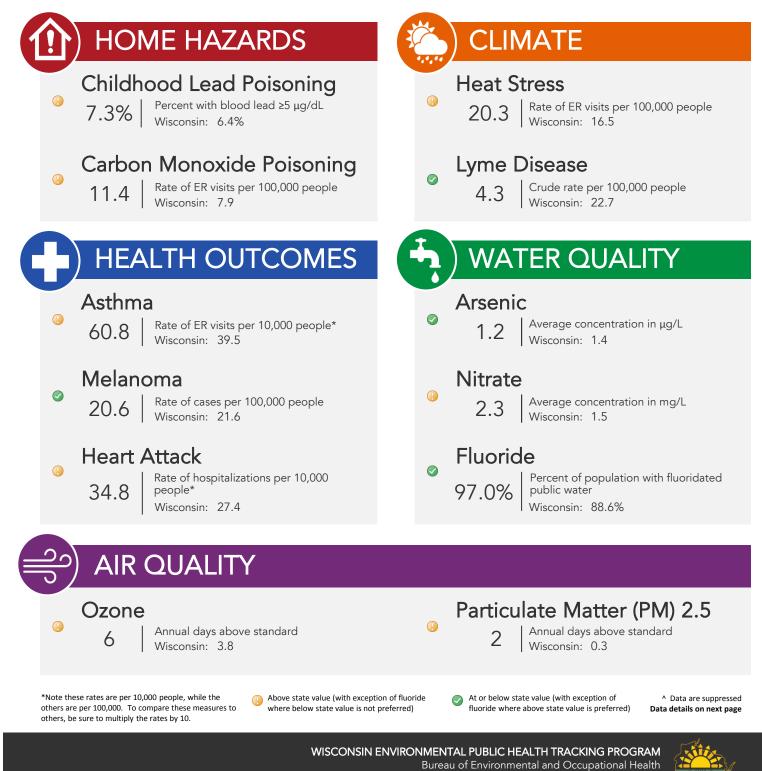
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

ROCK COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS ROCK COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 11.4

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

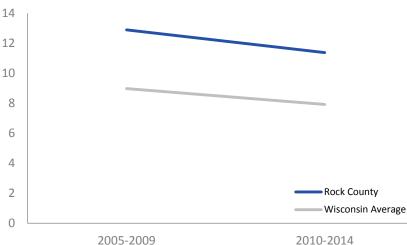
STATEWIDE: 7.9

• 7.3%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

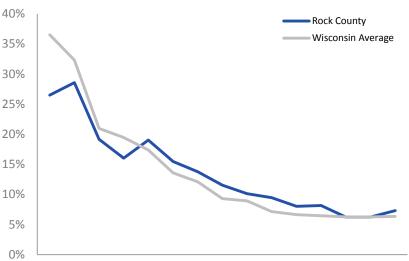
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

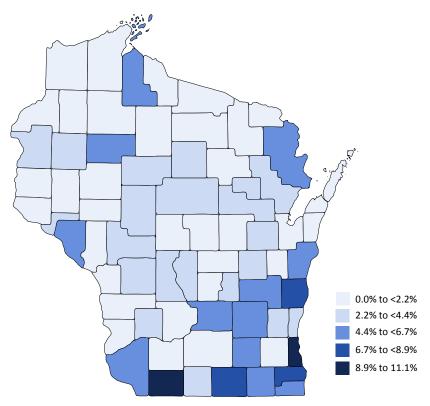
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

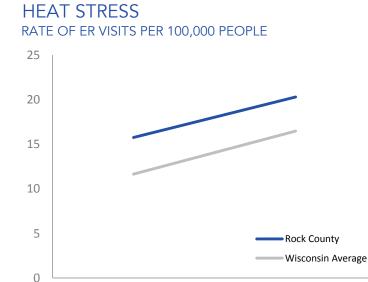
CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ${\geq}5~\mu\text{g/dL}$ 2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


20.3 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5

• 4.3 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

2010-2014

2005-2009

HEAT STRESS

Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

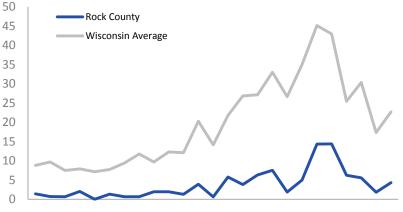
Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

60.8 **ASTHMA** RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

20.6

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6

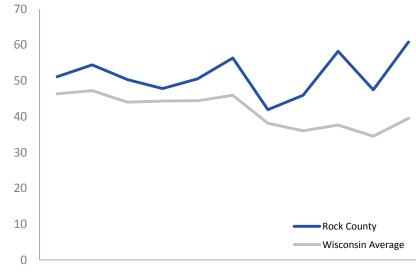
• 74.9

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1

34.8

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

Above state value At or below state value ^ Suppressed


ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our asthma disparities survillance brief, available in the resources section of our website.

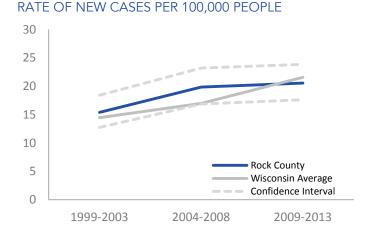
ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 9

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

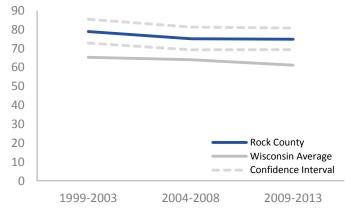
HEALTH OUTCOMES ROCK COUNTY

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

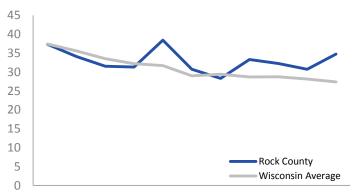
The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.


Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

ARSENIC

AVERAGE CONCENTRATION
IN PUBLIC WATER (µg/L)

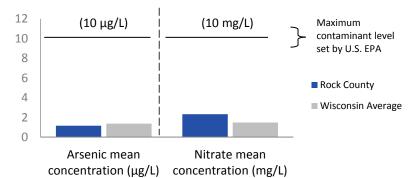
STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

2.3 NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 97.0%
 FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY ROCK COUNTY

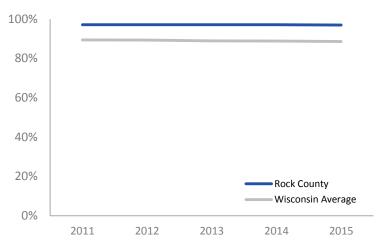
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

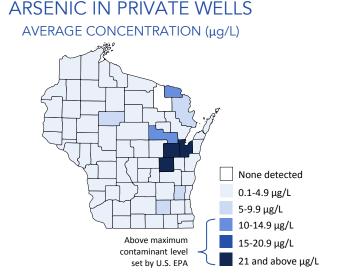

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

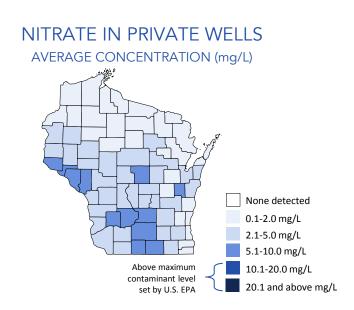
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



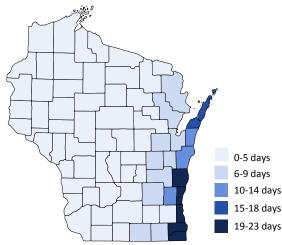

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

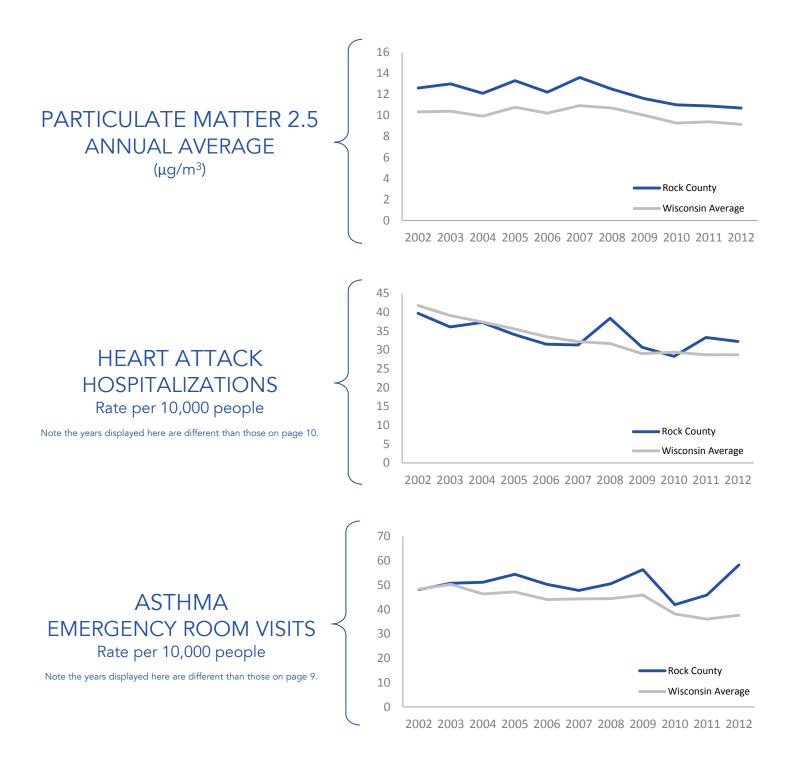
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8 2

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **10.7 PARTICULATE MATTER 2.5** ANNUAL AVERAGE (μg/m³)
 STATEWIDE: 9.1

4 Above state value
At or below state value
Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

RUSK COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

RUSK COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

MISCONSIN EPHT

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(HOME HAZARDS RUSK COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 23.8

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

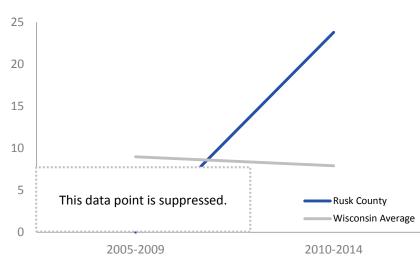
STATEWIDE: 7.9

• 4.8%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

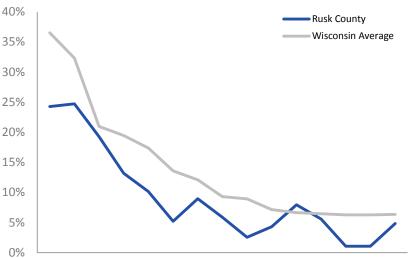
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

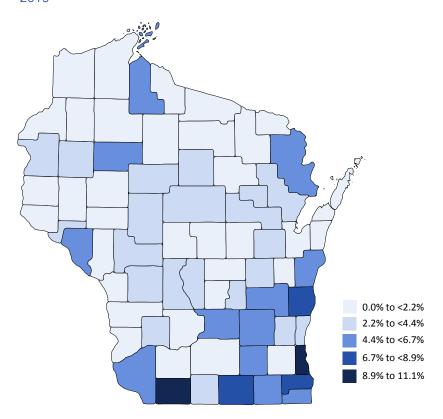
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

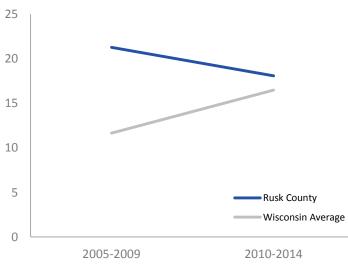
CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL 2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

Isotropy and the second sec


I 106.2 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

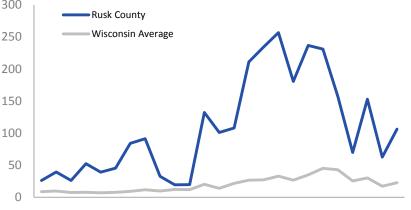
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infectedRAblack-legged tick (*Ixodes scapularis*) and is becoming300more common in Wisconsin. Lyme disease was the
fourth highest reported notifiable communicable250disease in 2015.200

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

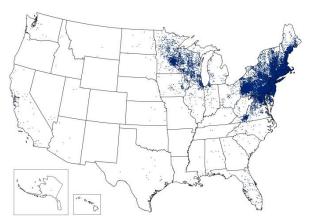
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

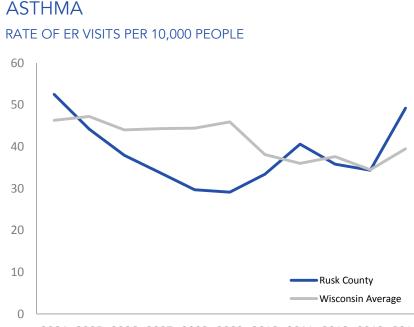
Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5 • 20.2

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 76.0 LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE

STATEWIDE: 61.1

 19.2
 HEART ATTACK
 RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value At or below state value Suppressed

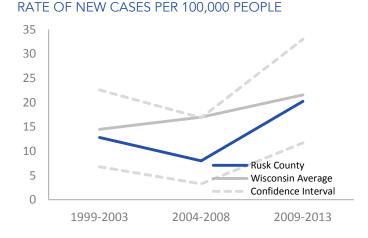
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

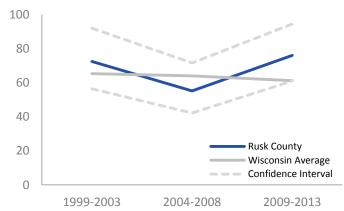
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

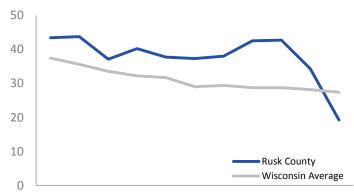
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC
> AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

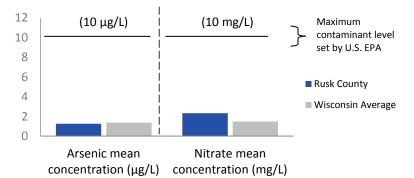
STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

2.3 NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 65.1%
 FLUORIDE
 PERCENT OF POPULATION WITH

FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY RUSK COUNTY

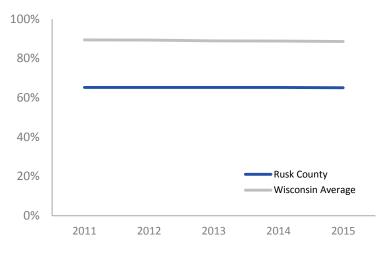
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

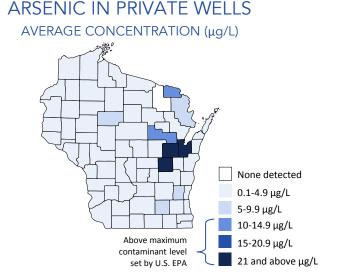

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

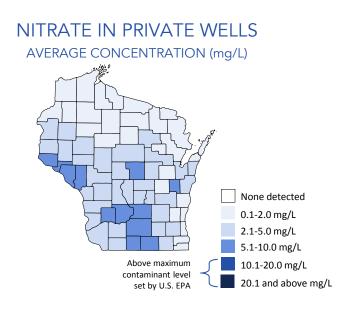
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



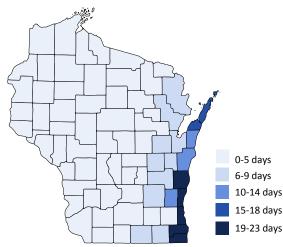

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

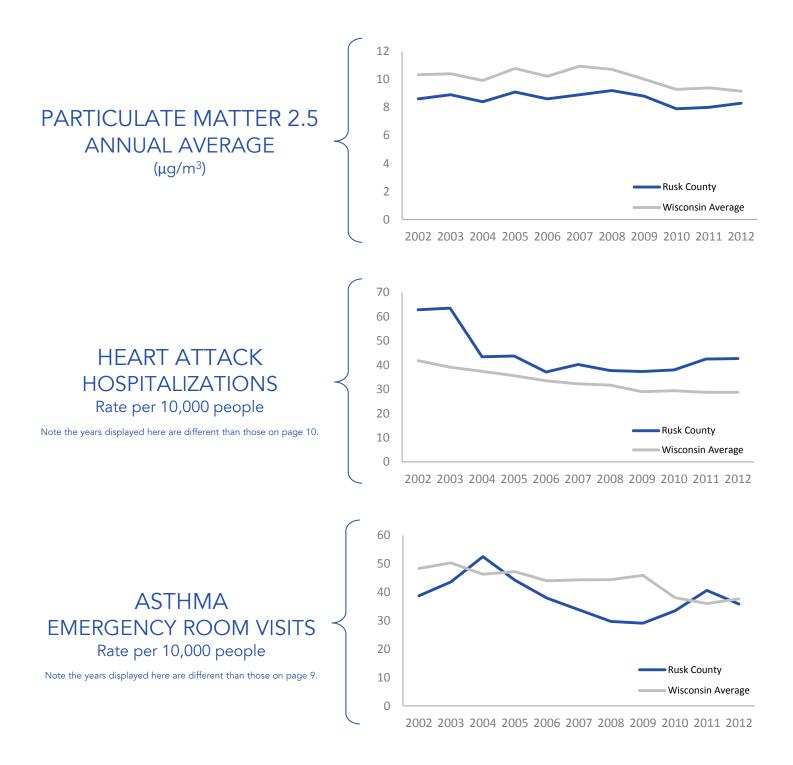
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **B.3 PARTICULATE MATTER 2.5** ANNUAL AVERAGE (μg/m³) STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

SAUK COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

SAUK COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(HOME HAZARDS SAUK COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 14.2

CARBON MONOXIDE POISONING

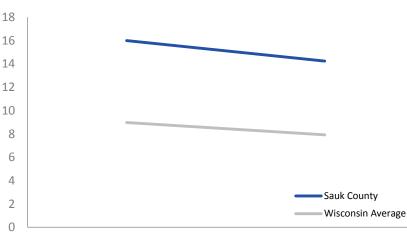
RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

• 1.4%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

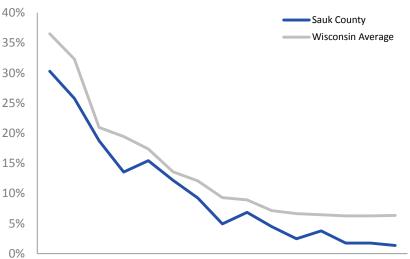
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

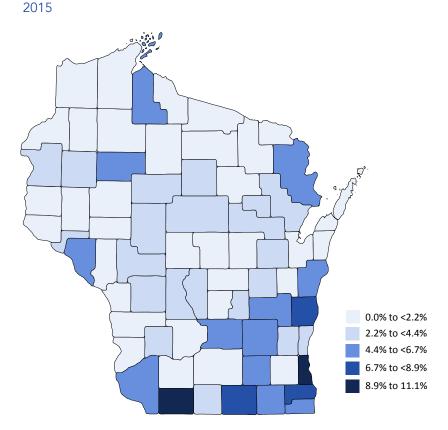
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

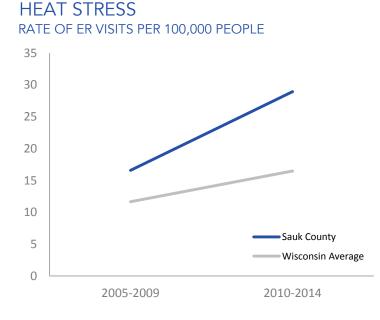
PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

Barrier Stress RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 42.4 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

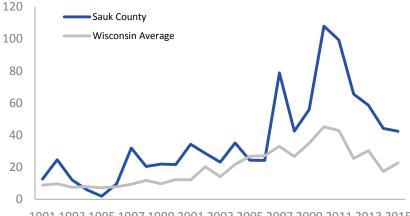
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

• 31.4 ASTHMA

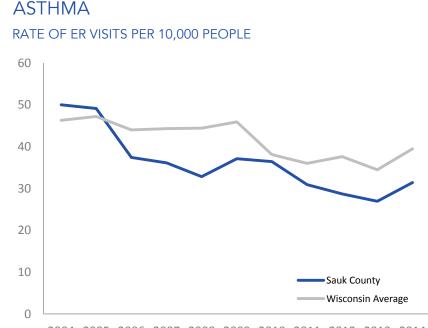
RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 14.3

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 57.3

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • 28.3

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


🕕 Above state value 🛛 🔗 At or below state value 🔹 ^ Suppressed

ASTHMA

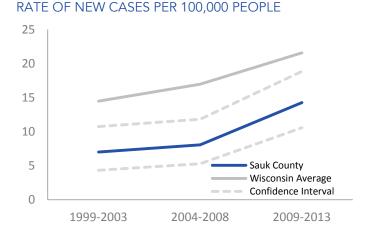
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

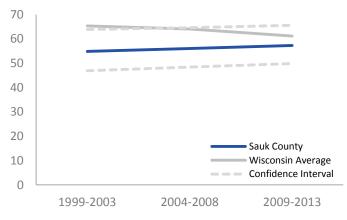
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

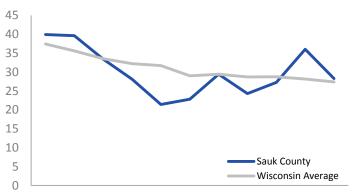
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ✓ U.4 ARSENIC
> AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

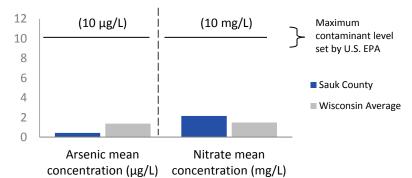
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

2.1 NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) • 94.5%

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY SAUK COUNTY

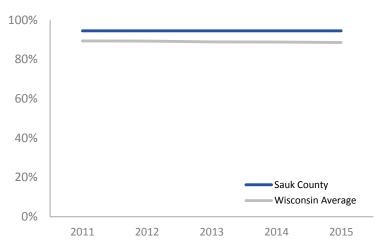
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

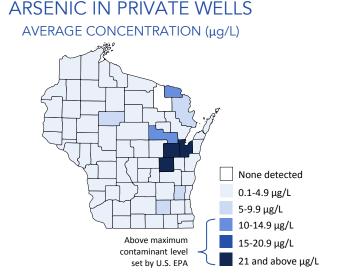

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

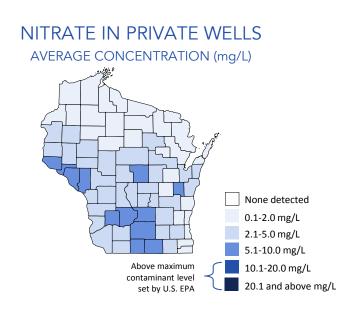
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



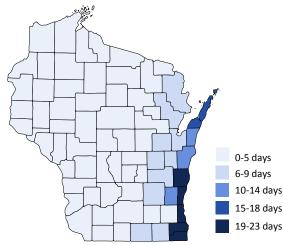

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

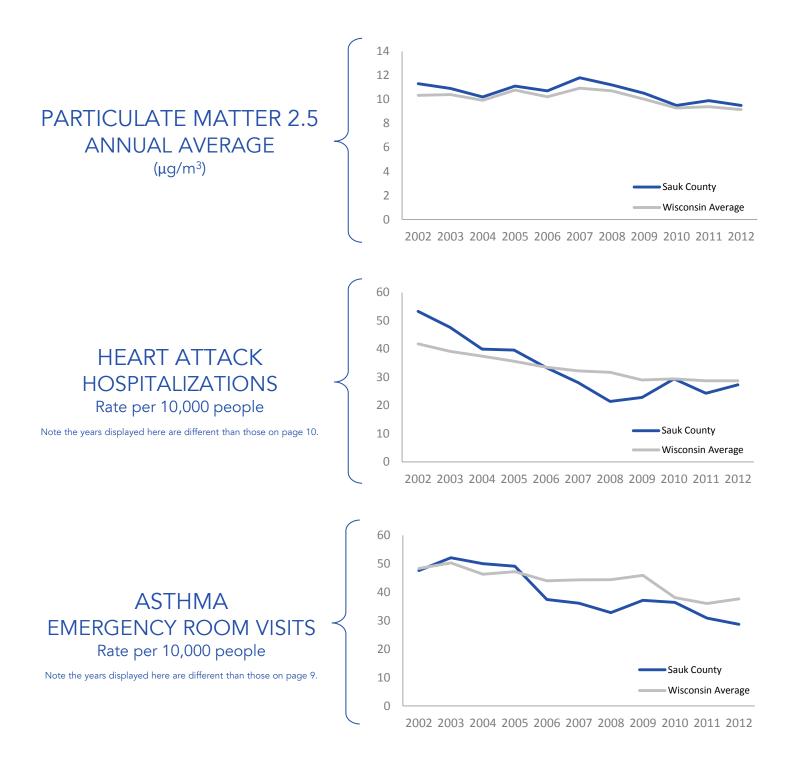
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 9.5
PARTICULATE MATTER 2.5
ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

4 Above state value At or below state value Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

SAWYER COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

SAWYER COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health WISCONSIN

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2005-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS SAWYER COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

8.5

CARBON MONOXIDE

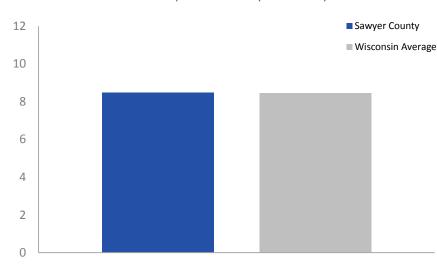
POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 8.5

• 1.9%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE (2005-2014)

CARBON MONOXIDE POISONING

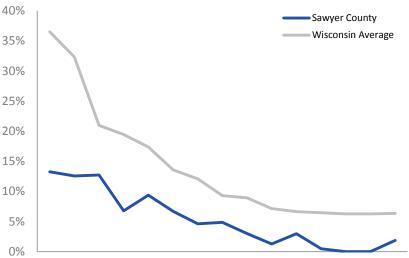
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

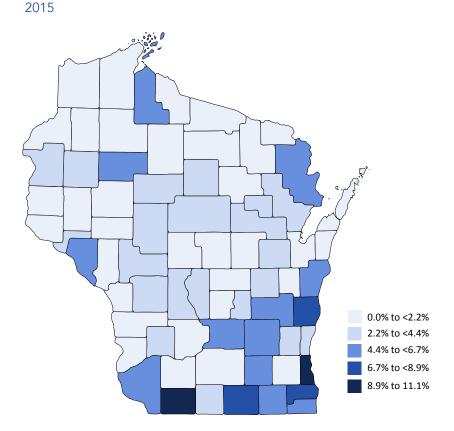
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

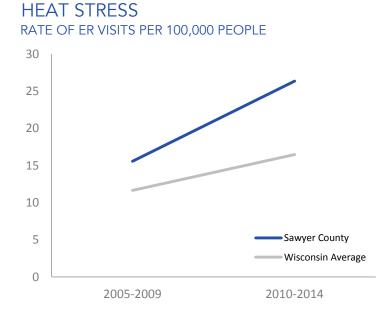
PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

$\begin{array}{l} \mbox{CHILDHOOD LEAD POISONING} \\ \mbox{PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5 $ \mu g/dL$} \end{array}$

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.


In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

Beat Stress RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 73.3 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value ^ Suppressed

HEAT STRESS

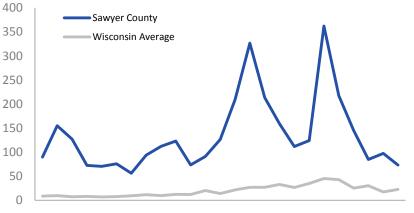
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

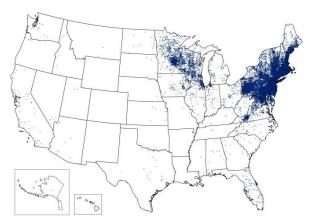
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

83.0 **ASTHMA** RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 26.2

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6

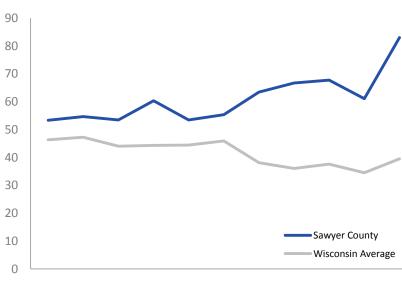
67.4

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1

31.0 HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

^ Suppressed

Above state value At or below state value


ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

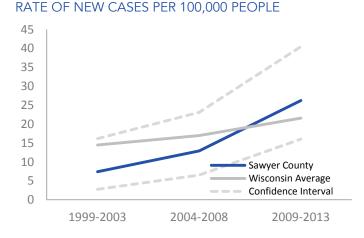
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our asthma disparities survillance brief, available in the resources section of our website.

ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE

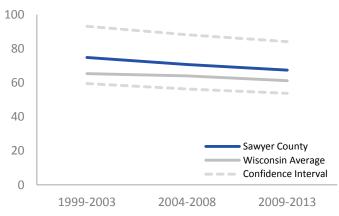
DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 9

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

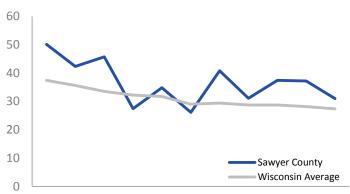
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L) STATEWIDE: 1.5

At or below state value (with exception

of fluoride where above state value is

preferred)

BACKGROUND

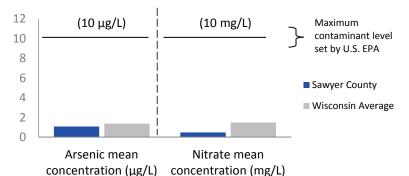
Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.


Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

> 65.3% FLUORIDE PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

> > STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY SAWYER COUNTY

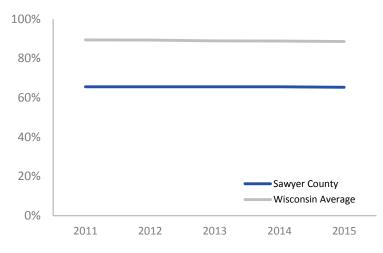
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

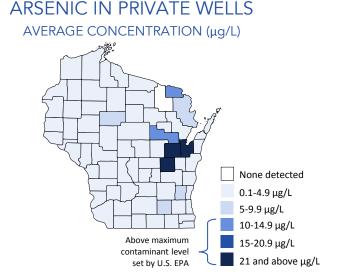

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

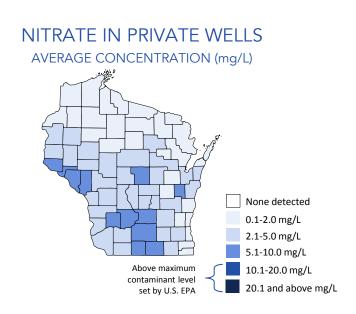
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

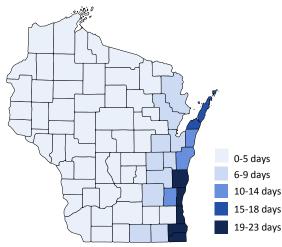
Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

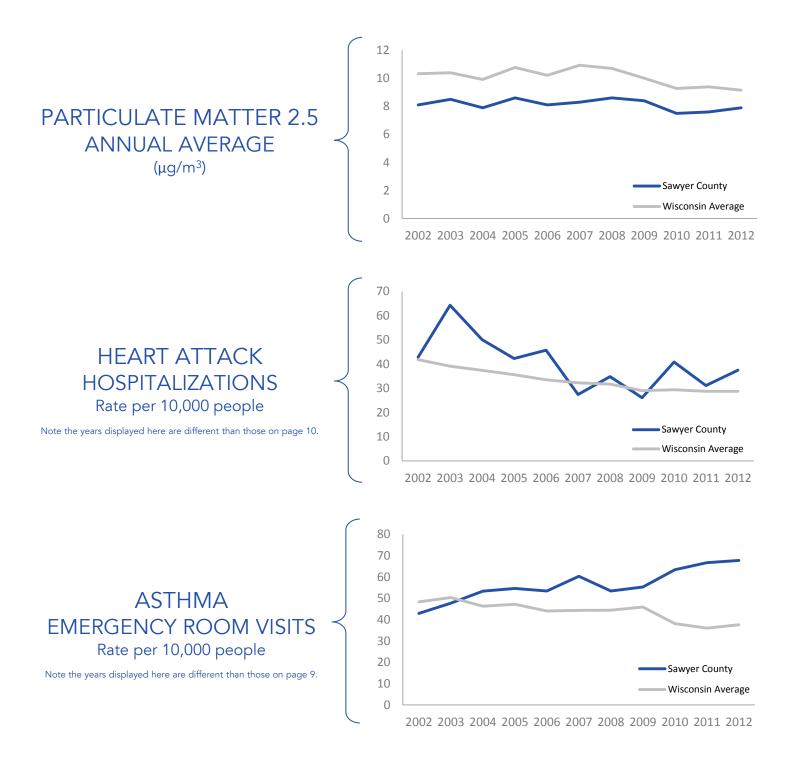
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 PARTICULATE MATTER 2.5 ANNUAL AVERAGE (µg/m³) STATEWIDE: 9.1

4 Above state value At or below state value Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level $\geq 5 \ \mu g/dL$

Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: Averaged data from 2005-2014

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 ,E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population. These data were averaged over ten years for five counties in order to minimize supression.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

SHAWANO COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

SHAWANO COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS SHAWANO COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 16.6

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

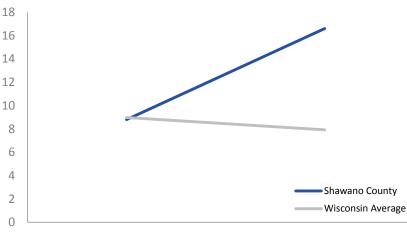
STATEWIDE: 7.9

• 2.9%

CHILDHOOD LEAD POISONING

 $\begin{array}{l} \mbox{PERCENT OF TESTED CHILDREN} \\ \mbox{WITH BLOOD LEAD} \geq 5 \ \mbox{\mug/dL} \end{array}$

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

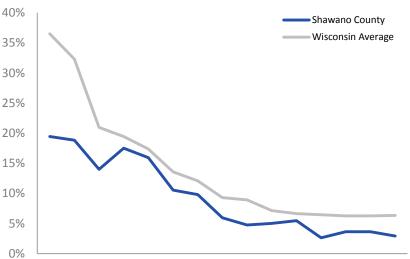
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

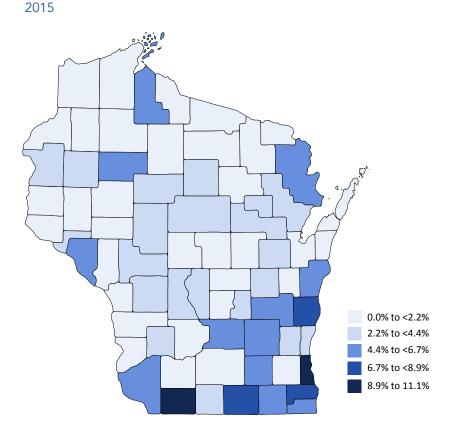
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

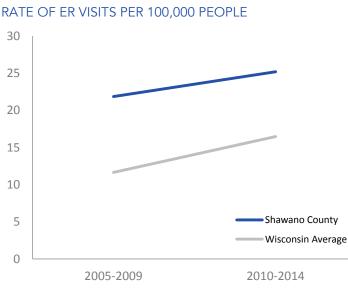
PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

$\begin{array}{l} \mbox{CHILDHOOD LEAD POISONING} \\ \mbox{percent of tested children with blood lead} \geq 5 \ \mu g/dL \end{array}$

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.


In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>. 25.2 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 B 36.3 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS RATE OF ER VISITS PER 100.000 PEOPLE

HEAT STRESS

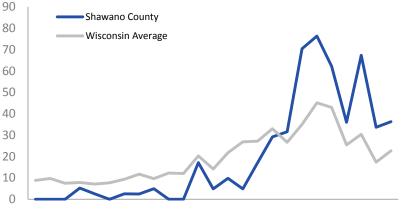
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

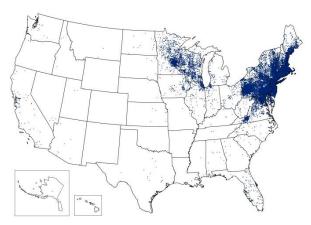
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

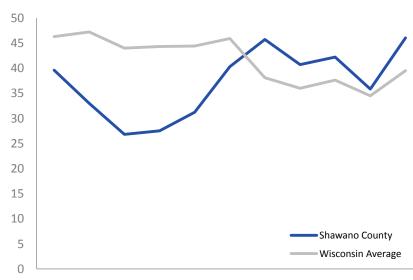
• **23.4**

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 55.0

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 Bart Attack RATE OF HOSPITALIZATIONS

PER 10,000 PEOPLE STATEWIDE: 27.4

🕖 Above state value 🛛 📀 At or below state value 🔷 Suppressed


ASTHMA

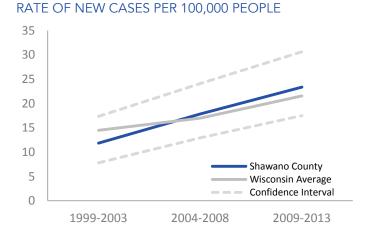
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

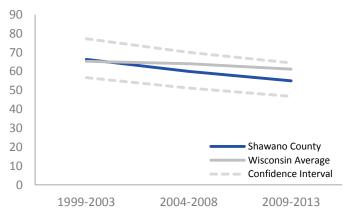
ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 D


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

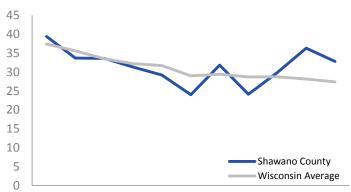

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5

preferred)

At or below state value (with exception

of fluoride where above state value is

BACKGROUND

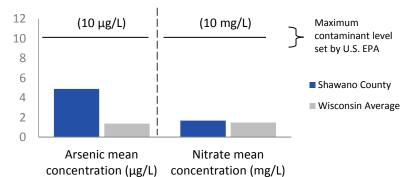
Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC
> AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.


Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

In the second second

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY SHAWANO COUNTY

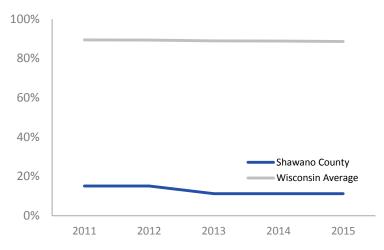
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

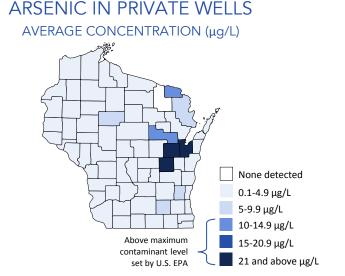

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

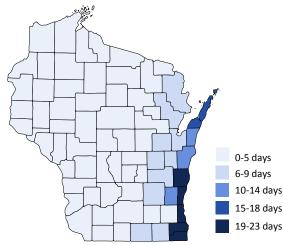
Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

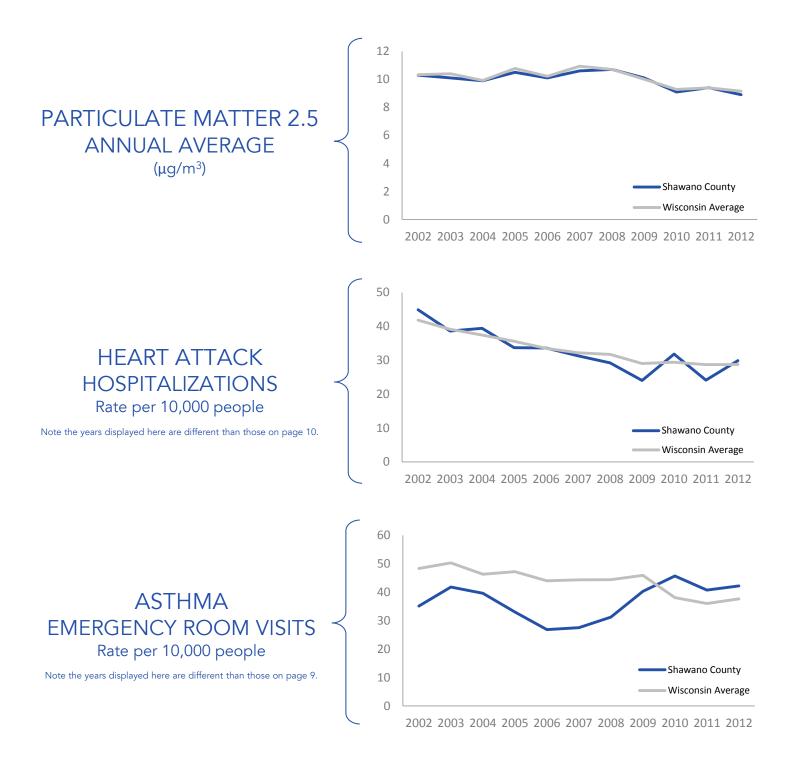
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **B.9 PARTICULATE MATTER 2.5** ANNUAL AVERAGE (μg/m³) STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

SHEBOYGAN COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

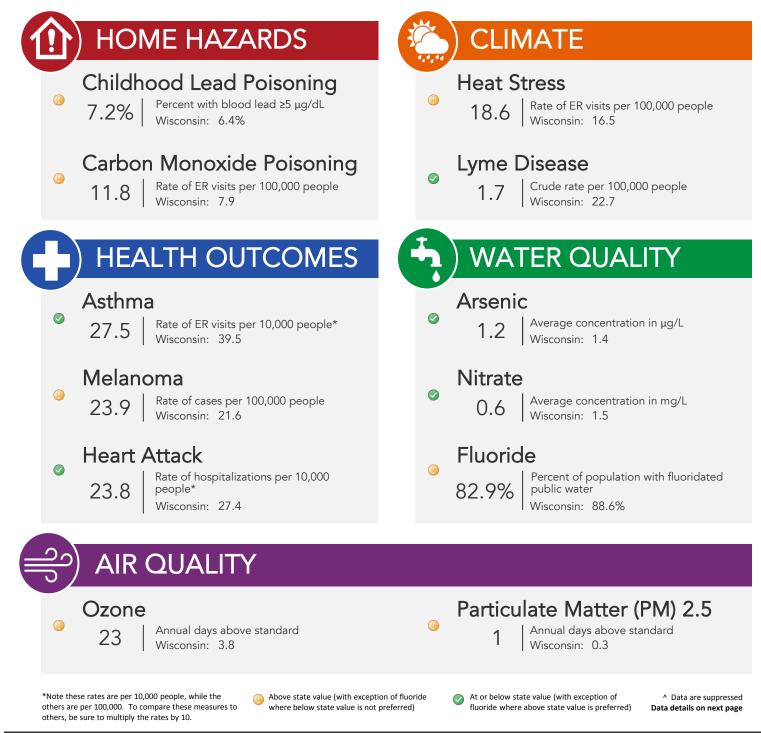
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

SHEBOYGAN COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS SHEBOYGAN COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 11.8

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

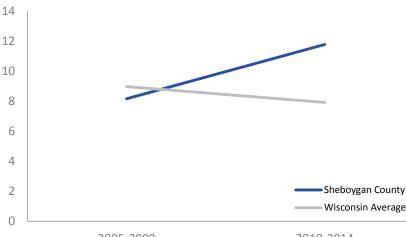
STATEWIDE: 7.9

• 7.2%

CHILDHOOD LEAD POISONING

 $\begin{array}{l} \mbox{PERCENT OF TESTED CHILDREN} \\ \mbox{WITH BLOOD LEAD} \geq 5 \ \mbox{\mug/dL} \end{array}$

STATEWIDE: 6.4%


Above state value 🥥

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

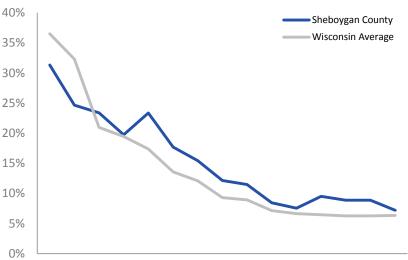
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

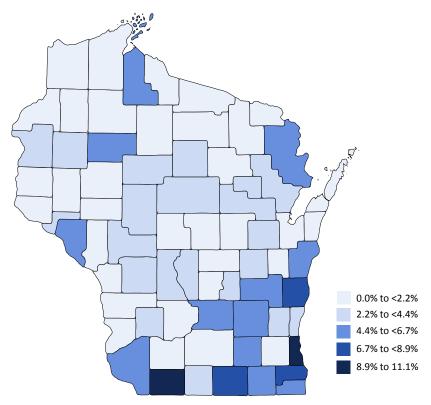
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD 25 µg/dL

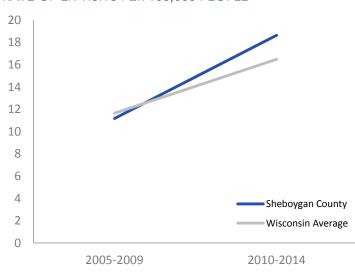
2015 PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5 \ \mu g/dL$

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


I 8.6 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 ■ 1.7
LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

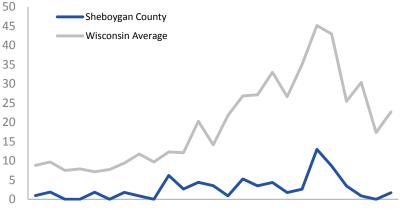
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

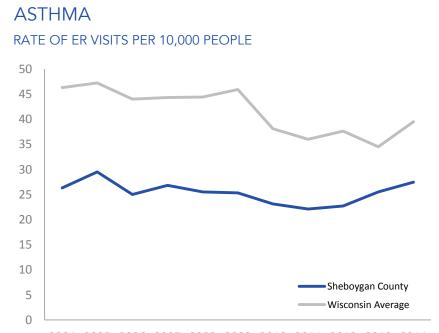
Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

• 27.5 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5 • 23.9

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 60.7 LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 23.8 HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value At or below state value Suppressed

ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

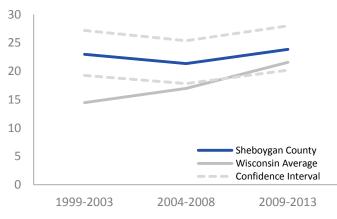
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

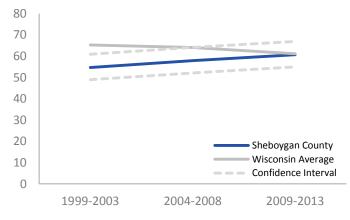
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.


Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.


Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

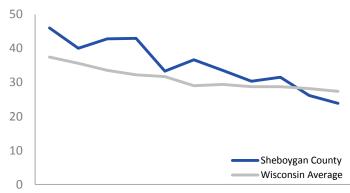
MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

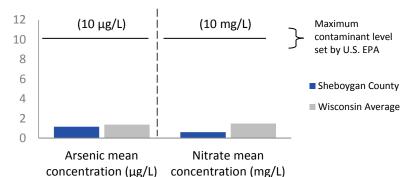
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

© U.6 NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 82.9% FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY SHEBOYGAN COUNTY

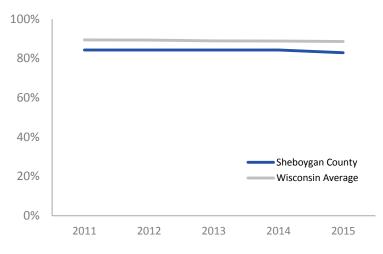
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

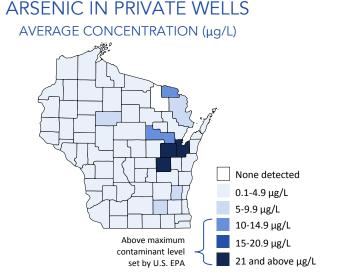

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

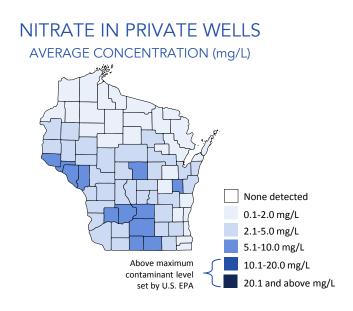
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

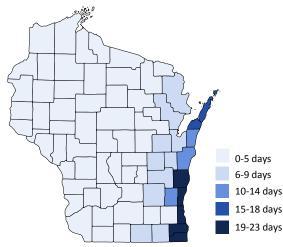
Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

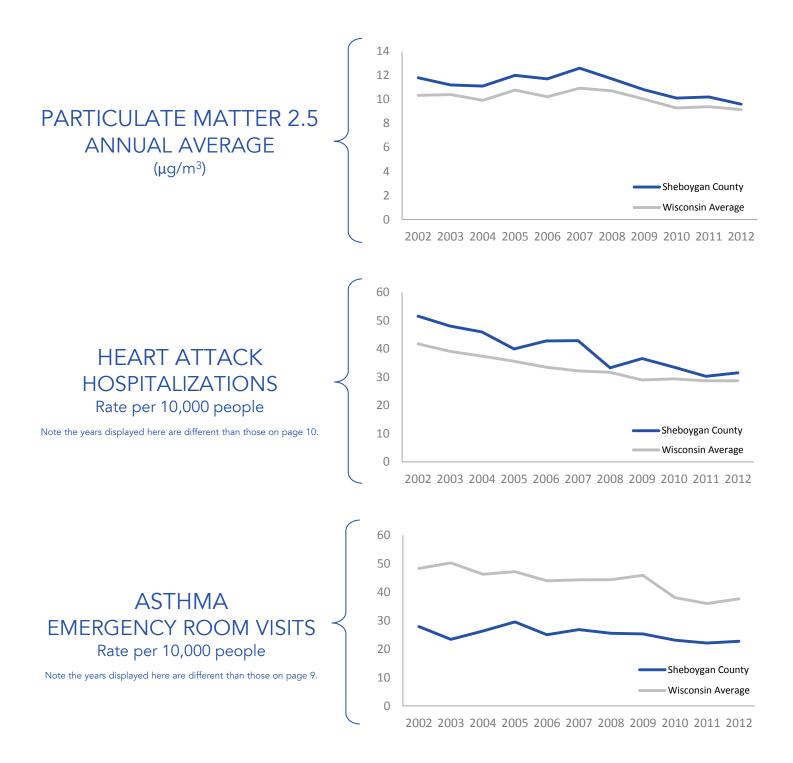
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 9.6
PARTICULATE MATTER 2.5
ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

4 Above state value At or below state value Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

ST.CROIX COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

ST.CROIX COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS ST. CROIX COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 5.0

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

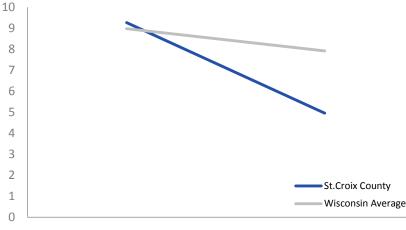
STATEWIDE: 7.9

• 0.0%

CHILDHOOD LEAD POISONING

 $\begin{array}{l} \mbox{PERCENT OF TESTED CHILDREN} \\ \mbox{WITH BLOOD LEAD} \geq 5 \ \mbox{\mug/dL} \end{array}$

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

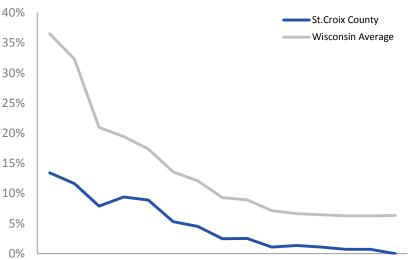
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

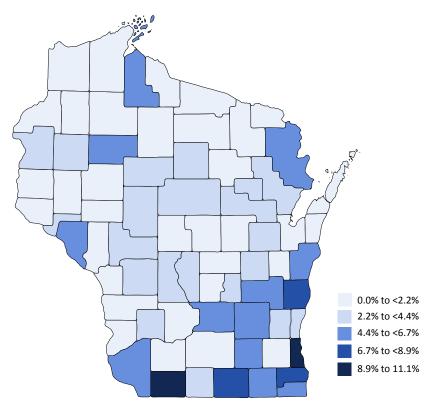
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING

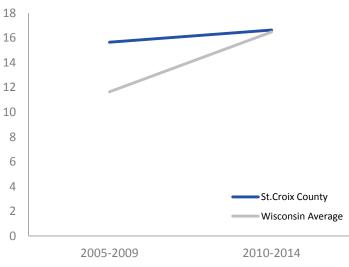
PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ${\geq}5~\mu\text{g/dL}$ 2015

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


I 16.6 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 54.9 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

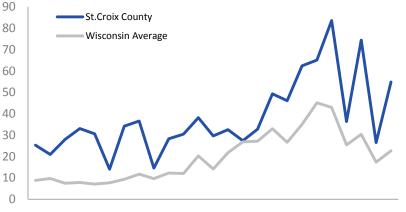
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

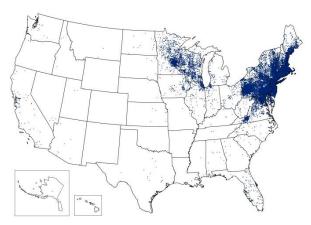
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

• 19.8 ASTHMA RATE OF ER VISITS DEP 10 000 DECODI E

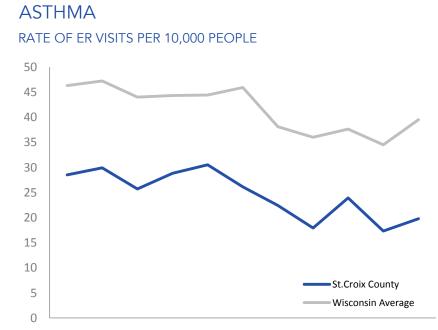
PER 10,000 PEOPLE STATEWIDE: 39.5

• 11.0

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6

• 45.5

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • 24.2


HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

ASTHMA

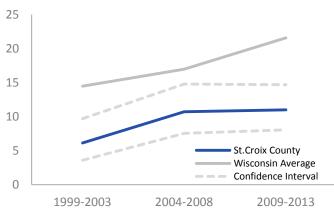
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

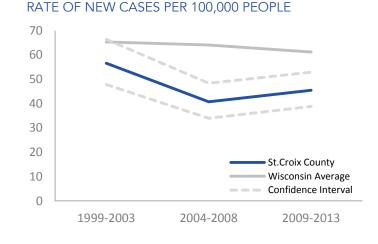
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

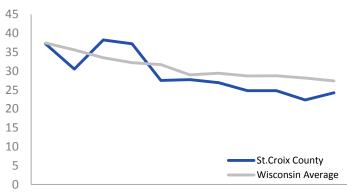

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

LUNG CANCER

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE


HEART ATTACK

A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

STATEWIDE: 1.5

preferred)

At or below state value (with exception

of fluoride where above state value is

BACKGROUND

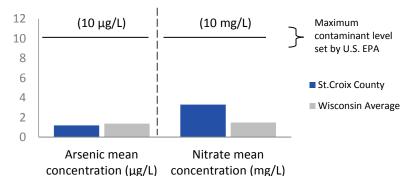
Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

ARSENIC
 AVERAGE CONCENTRATION
 IN PUBLIC WATER (μg/L)

STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.


Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

 3.3
 NITRATE
 AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)
 75.3%
 FLUORIDE
 PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY ST.CROIX COUNTY

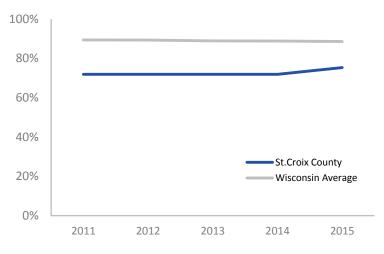
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

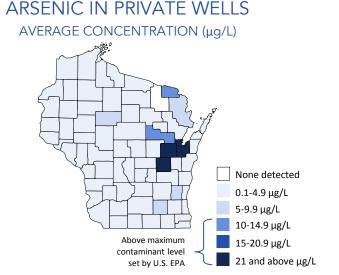

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

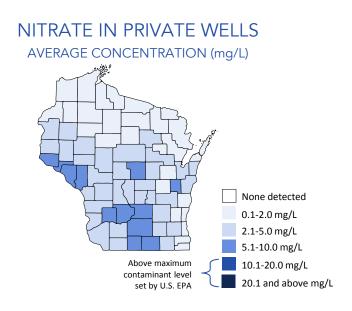
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

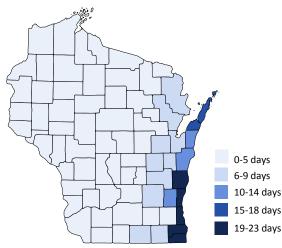
Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

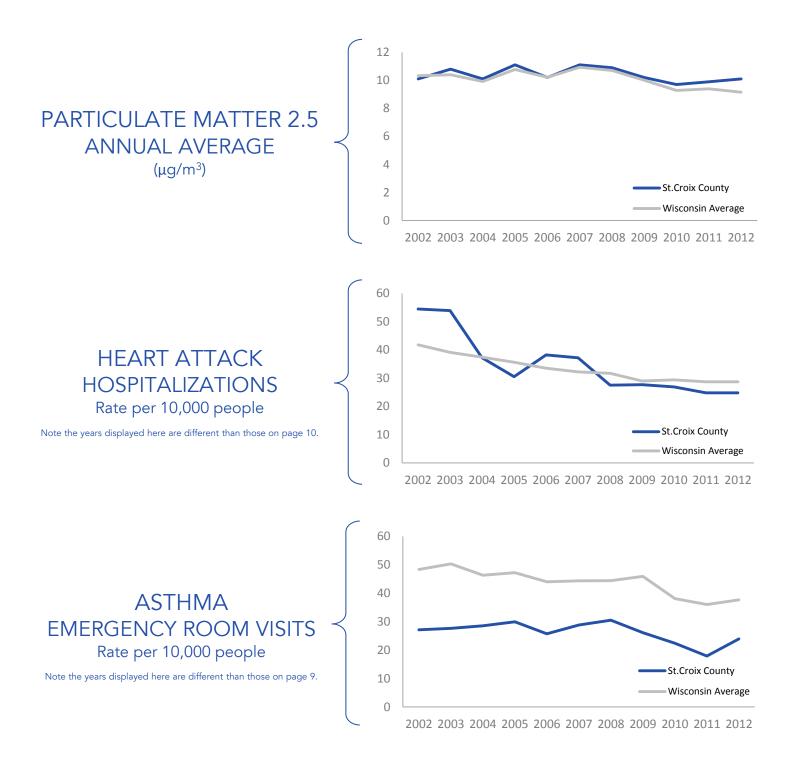
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **10.1 PARTICULATE MATTER 2.5** ANNUAL AVERAGE (μg/m³)
 STATEWIDE: 9.1

4 Above state value
At or below state value
Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

TAYLOR COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

TAYLOR COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health WISCONSIN

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS TAYLOR COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 10.7

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

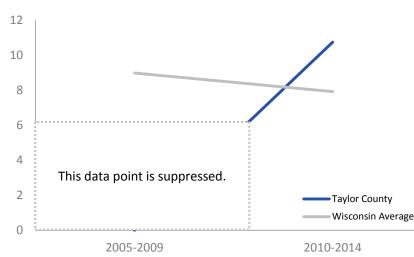
STATEWIDE: 7.9

• 3.2%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

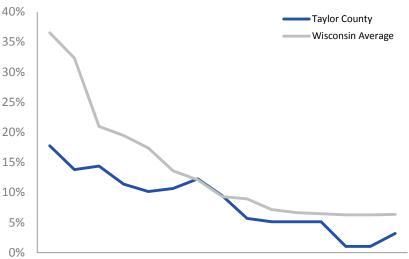
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

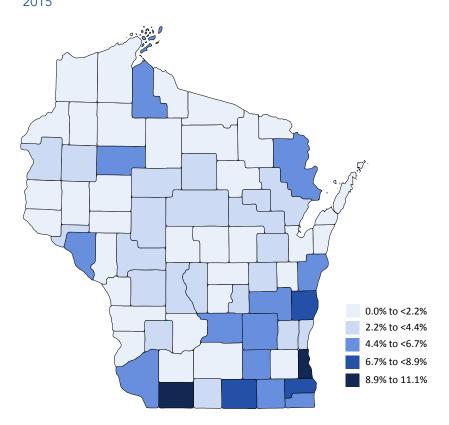
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

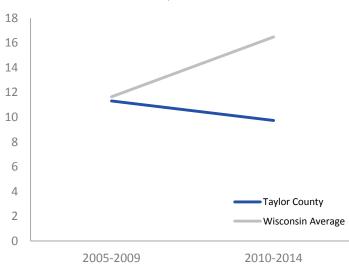
CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL 2015

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


• 9.7 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 58.7 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE

HEAT STRESS

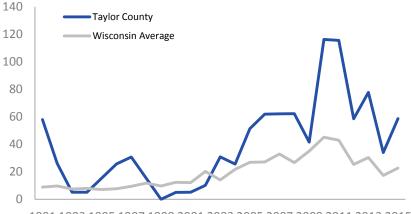
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

23.3 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

ASTHMA

14.0

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6

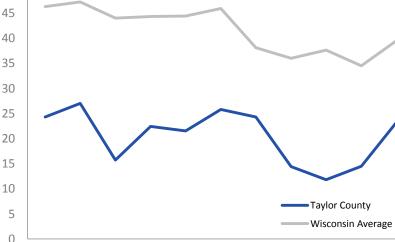
• 47.4

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1

17.8

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

Above state value At or below state value ^ Suppressed


ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

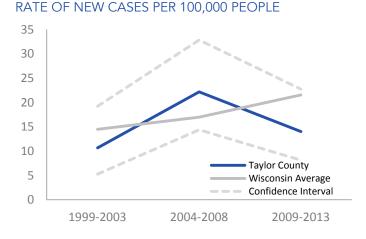
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our asthma disparities survillance brief, available in the resources section of our website.

RATE OF ER VISITS PER 10,000 PEOPLE 50 45 40 35 30

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 9

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

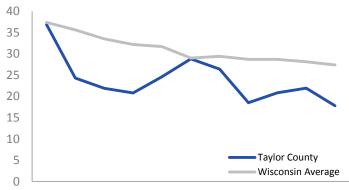
The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC
> AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

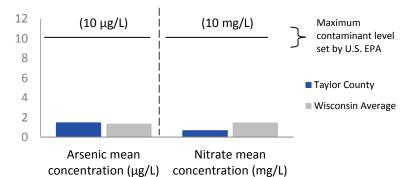
STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) O.0% FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY TAYLOR COUNTY

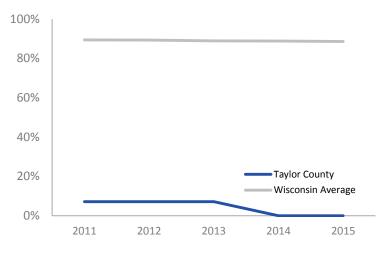
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

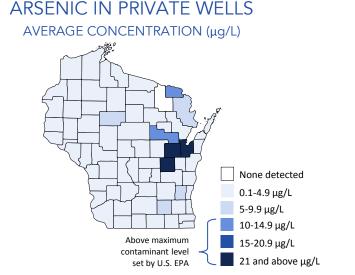

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

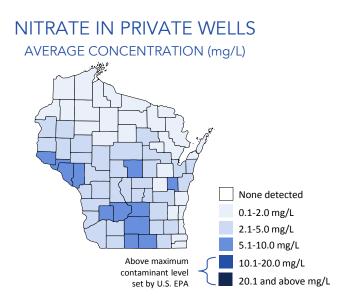
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

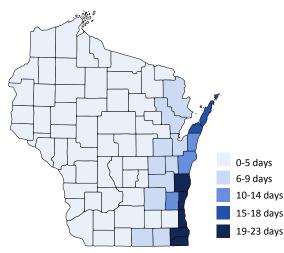
Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

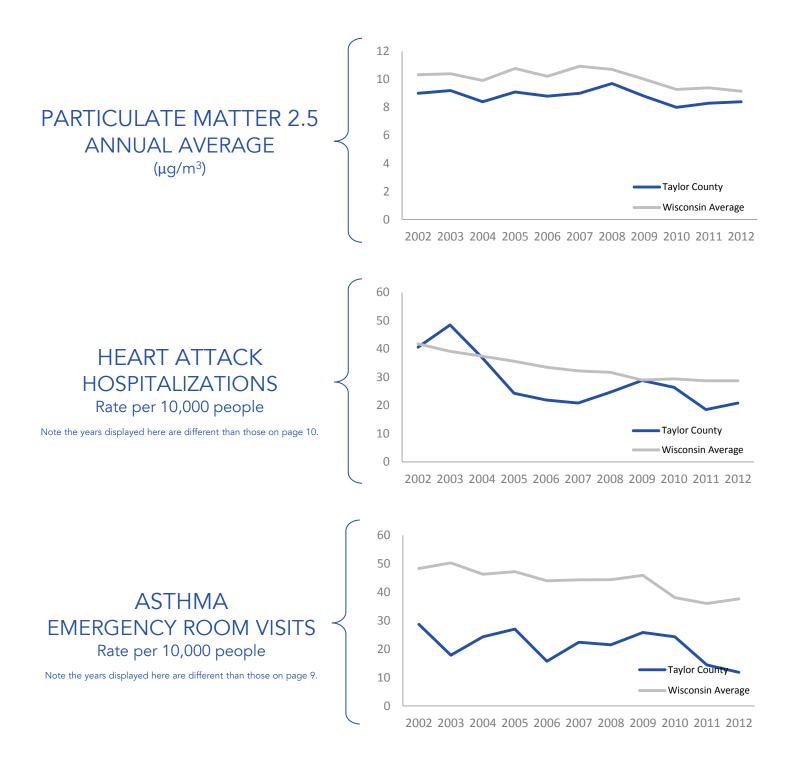
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 STATEWIDE: 9.1
STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

2017

TREMPEALEAU COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

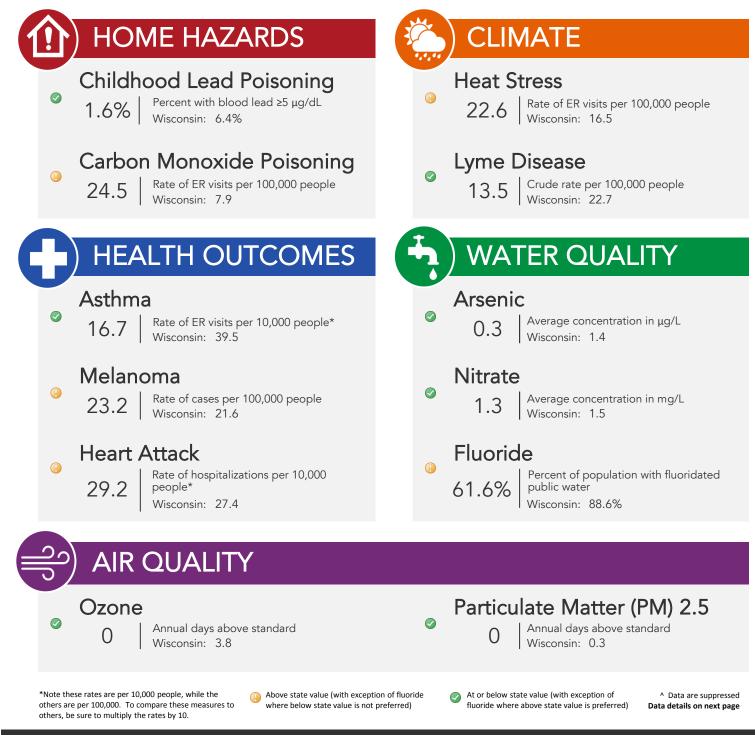
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

TREMPEALEAU COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS TREMPEALEAU COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 24.5

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

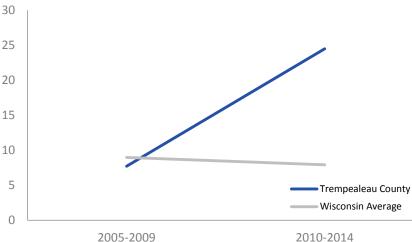
STATEWIDE: 7.9

• 1.6%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value 🥥

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

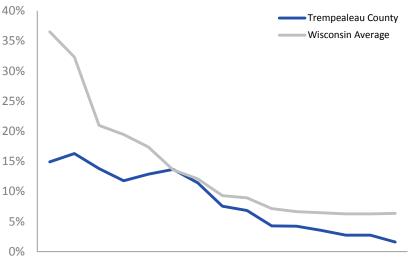
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

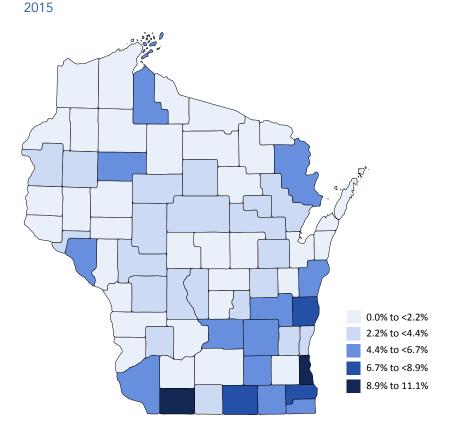
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

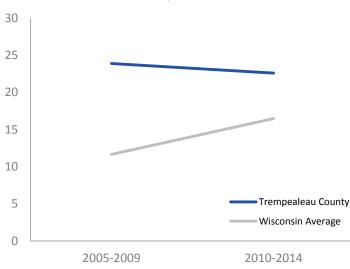
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

BEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 ■ 13.5
LYME DISEASE
RATE OF CASES
PER 100,000 PEOPLE
STATEWIDE: 22.7

Above state value

At or below state value ^ Suppressed

HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE

HEAT STRESS

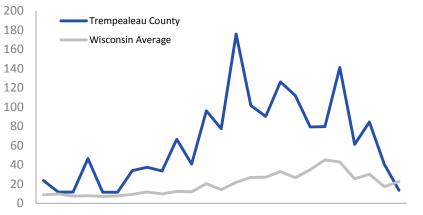
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

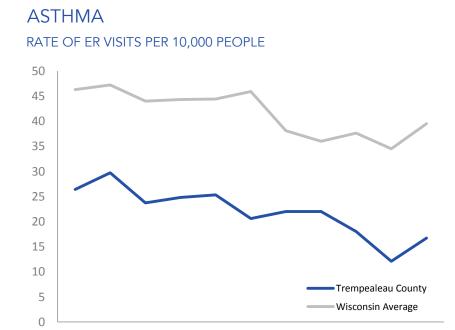
16.7
 ASTHMA
 RATE OF ER VISITS
 PER 10,000 PEOPLE
 STATEWIDE: 39.5

• 23.2

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • **57.8**

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 9 29.2 HEART ATTACK RATE OF HOSPITALIZATIC

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


4 Above state value
At or below state value
Suppressed

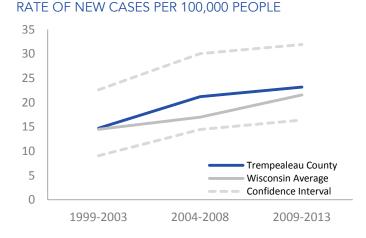
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

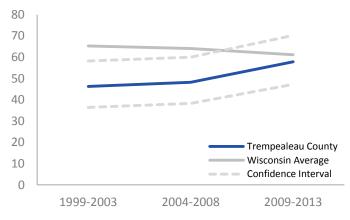
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK

A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5

preferred)

At or below state value (with exception

of fluoride where above state value is

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

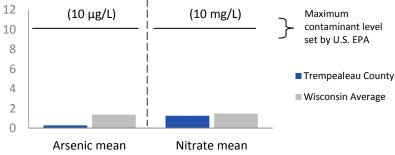
Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred)

high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.


Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

> 61.6% FLUORIDE PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

> > STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

concentration (μ g/L) concentration (mg/L)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. **Environmental Protection Agency.**

WATER QUALITY TREMPEALEAU COUNTY

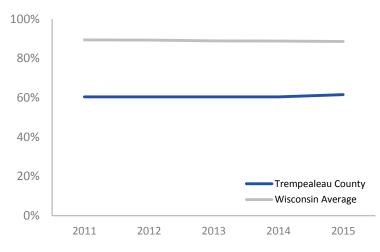
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

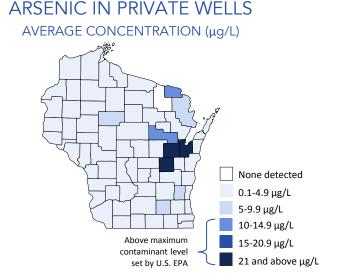

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

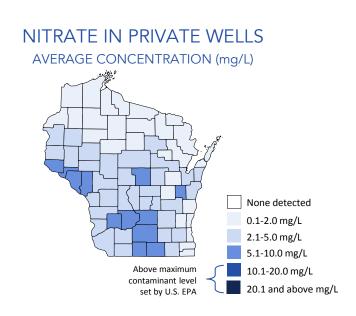
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



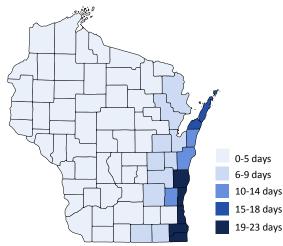

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 9.5
PARTICULATE MATTER 2.5
ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE

The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

VERNON COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

VERNON COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

HOME HAZARDS VERNON COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

3.9

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

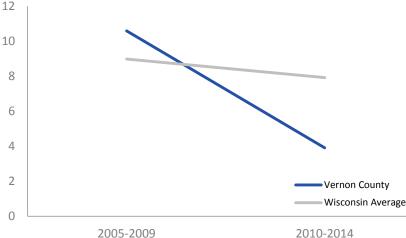
STATEWIDE: 7.9

0.0%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

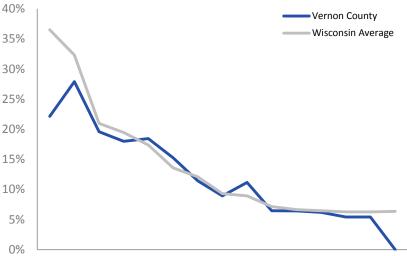
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

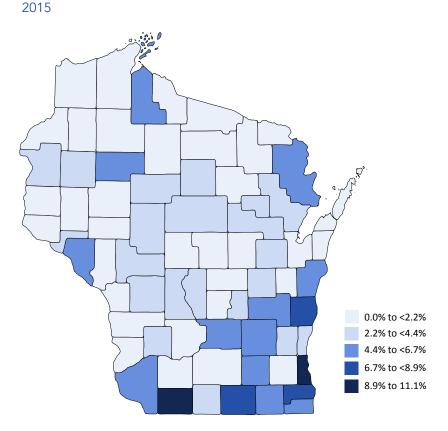
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

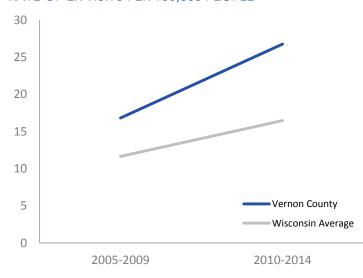
$\begin{array}{l} \mbox{CHILDHOOD LEAD POISONING} \\ \mbox{Percent of tested children with blood lead} \geq 5 \ \mu g/dL \end{array}$

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


Beat Stress RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 91.8
LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE

HEAT STRESS

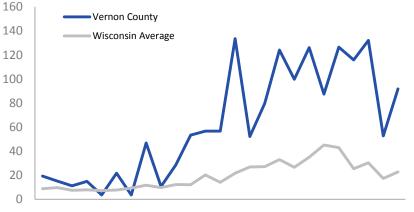
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

35.6 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 13.6

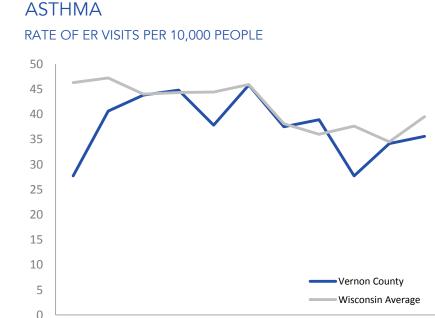
MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6

55.0

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1

26.0 HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value At or below state value ^ Suppressed

ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

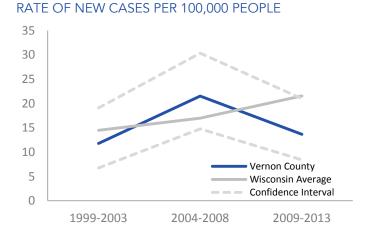
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our asthma disparities survillance brief, available in the resources section of our website.

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

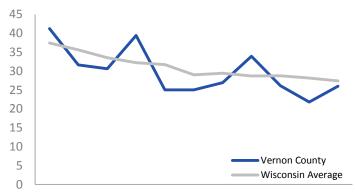
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L) STATEWIDE: 1.5

At or below state value (with exception

of fluoride where above state value is

preferred)

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

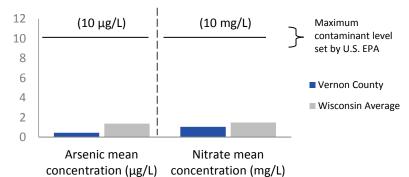
Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.


> FLUORIDE PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

0.0%

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY VERNON COUNTY

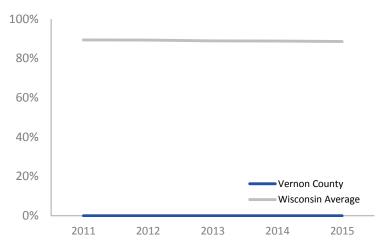
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

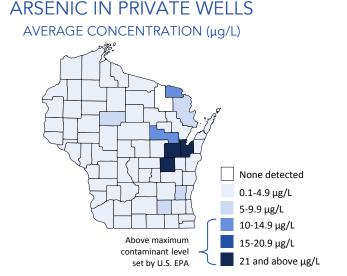

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

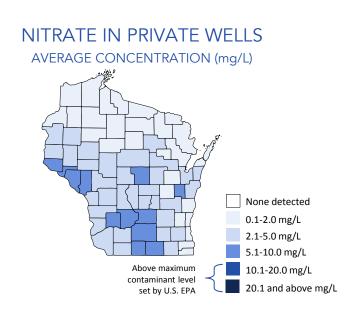
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



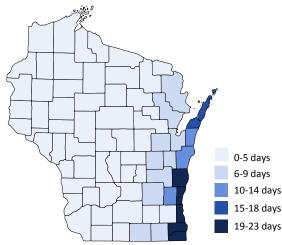

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

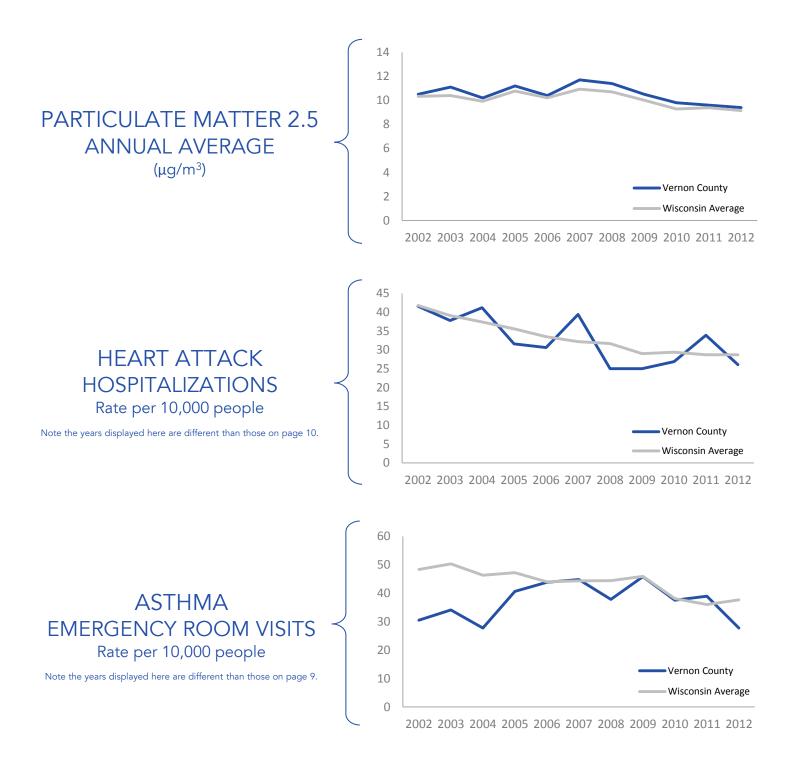
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **9.4 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

VILAS COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

VILAS COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

HOME HAZARDS VILAS COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

17.5

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

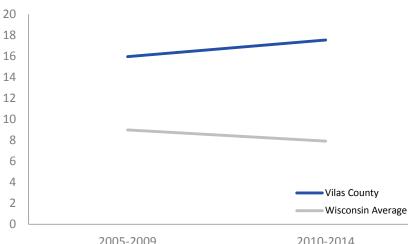
STATEWIDE: 7.9

0.0%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

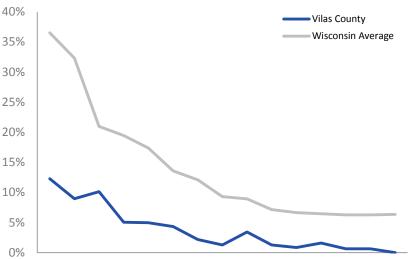
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

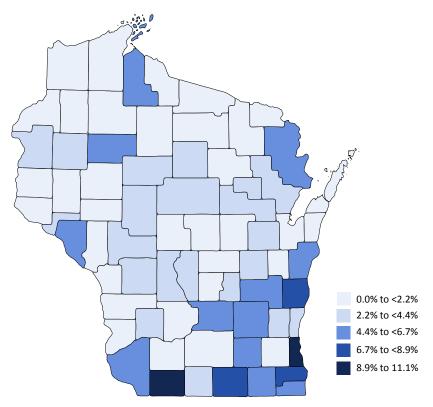
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

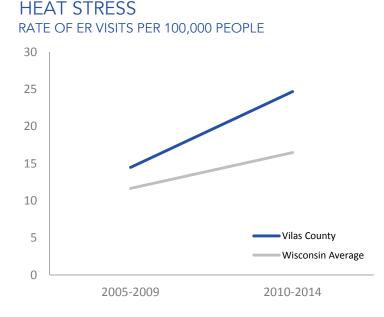
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ${\geq}5~\mu\text{g/dL}$ 2015

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.


In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>. 24.7 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 51.4 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

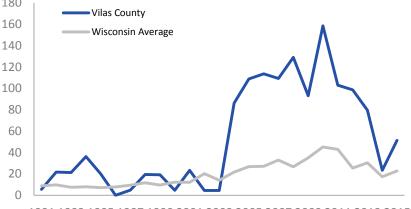
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infectedRAblack-legged tick (*Ixodes scapularis*) and is becoming180more common in Wisconsin. Lyme disease was the160fourth highest reported notifiable communicable140disease in 2015.120

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

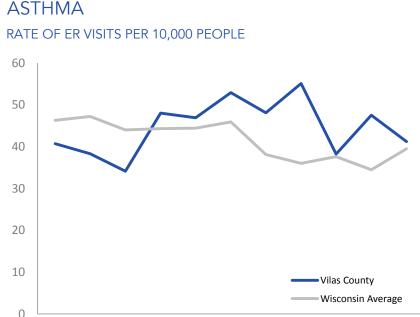
• 41.2 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

10.7

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 66.7

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • **38.4** HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


🕕 Above state value 🛛 🤡 At or below state value 🔹 ^ Suppressed

ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

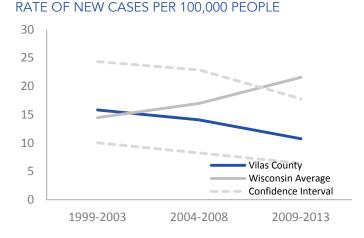
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

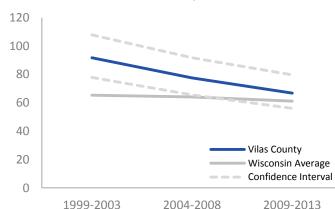
DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

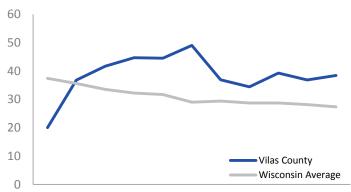
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L) STATEWIDE: 1.5

At or below state value (with exception

of fluoride where above state value is

preferred)

BACKGROUND

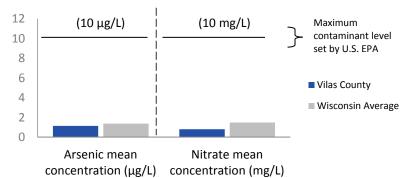
Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.


Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

62.7%
 FLUORIDE
 PERCENT OF POPULATION WITH
 FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY VILAS COUNTY

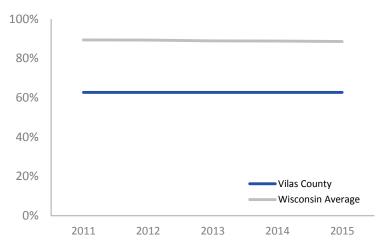
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

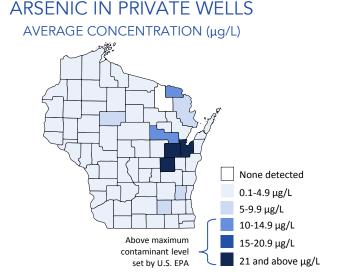

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

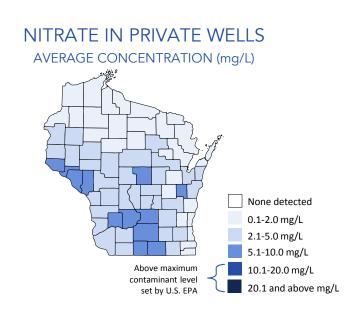
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



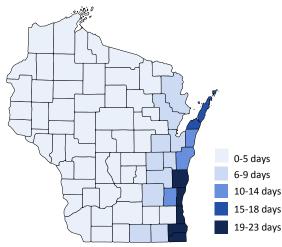

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

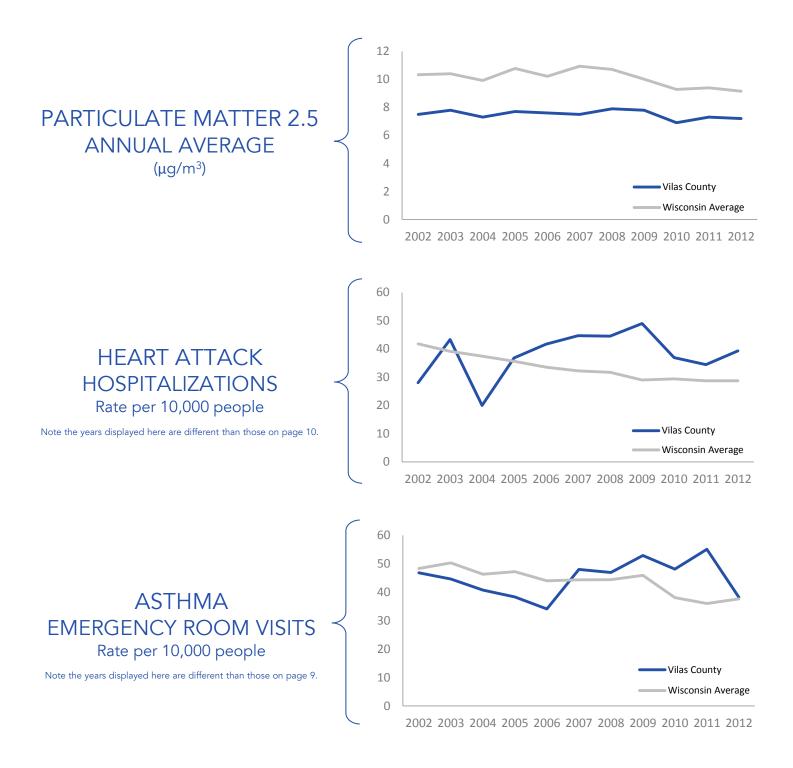
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 7.2
PARTICULATE MATTER 2.5
ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

2017

WALWORTH COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

WALWORTH COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS WALWORTH COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 4.9

CARBON MONOXIDE POISONING

RATE OF ER VISITS RELATED TO CO PER 100,000

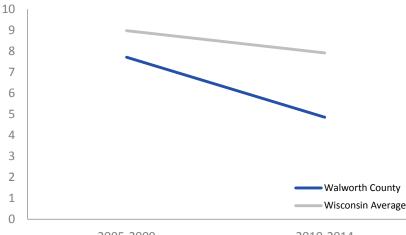
STATEWIDE: 7.9

• **5.5%**

CHILDHOOD LEAD POISONING

 $\begin{array}{l} \mbox{PERCENT OF TESTED CHILDREN} \\ \mbox{WITH BLOOD LEAD} \geq 5 \ \mbox{\mug/dL} \end{array}$

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

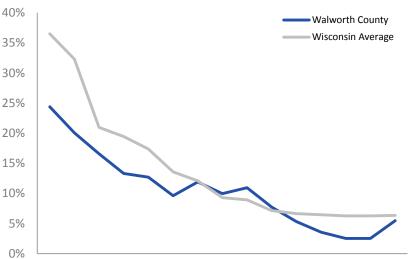
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

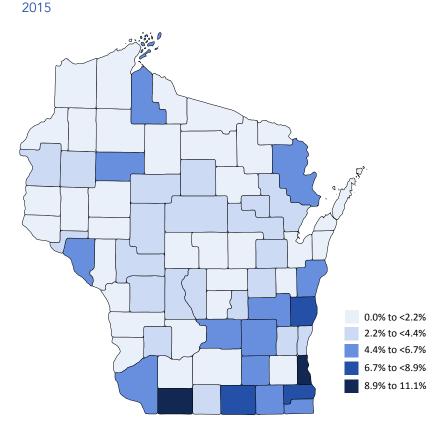
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

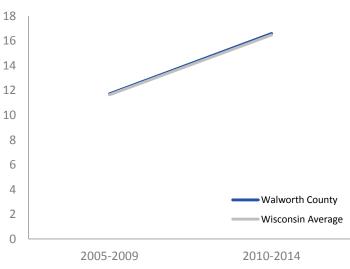

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.


In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

I 16.6 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 Above state value

At or below state value ^ Suppressed

HEAT STRESS

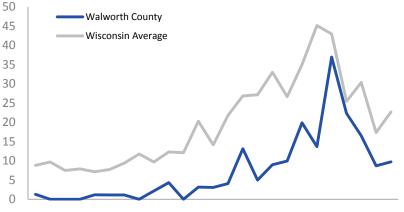
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

STATEWIDE: 39.5

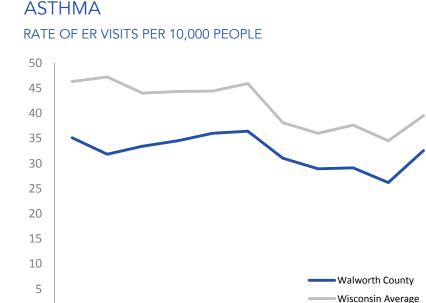
0

• 26.0

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 64.0

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 30.2
 HEART ATTACK
 RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

STATEWIDE: 27.4

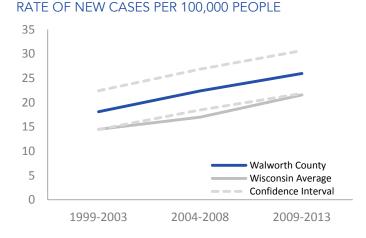

Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

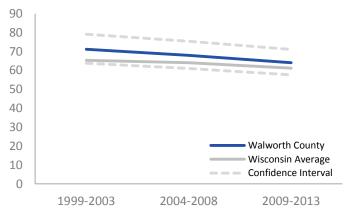
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

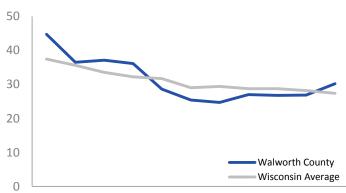

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> Particle 2.5 ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

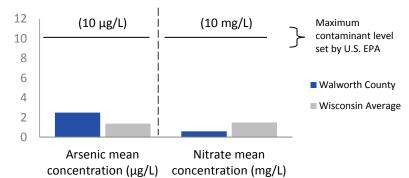
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

© U.6 NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) • 61.4% FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER OUALITY WALWORTH COUNTY

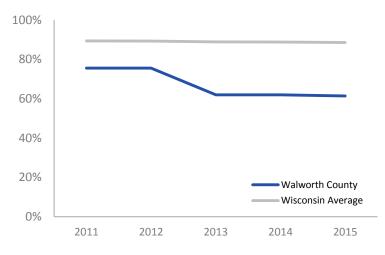
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

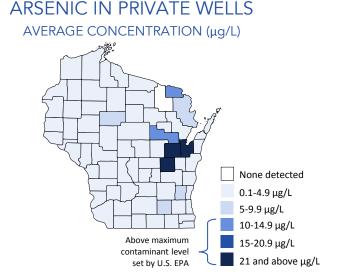

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

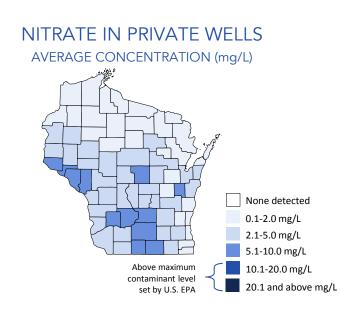
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



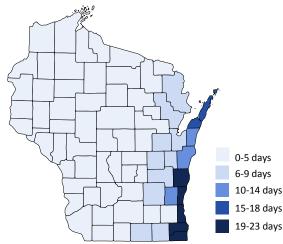

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

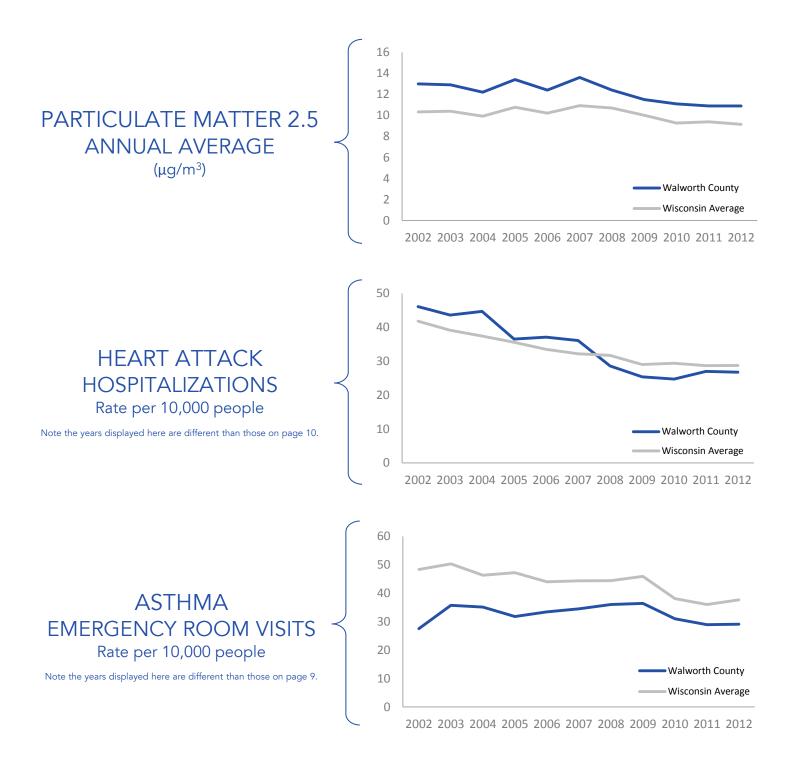
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8 2

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **10.9 PARTICULATE MATTER 2.5** ANNUAL AVERAGE (μg/m³)
 STATEWIDE: 9.1

4 Above state value
At or below state value
Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

WASHBURN COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

WASHBURN COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS WASHBURN COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 28.1

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

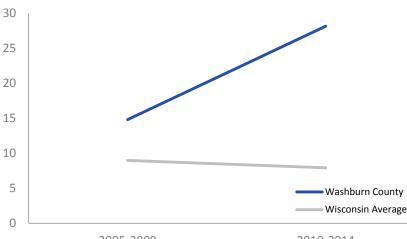
STATEWIDE: 7.9

• 0.0%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

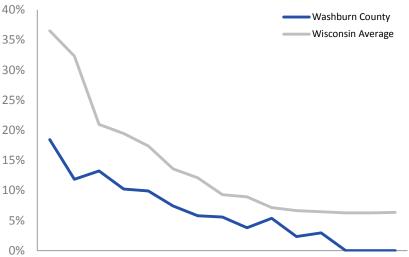
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

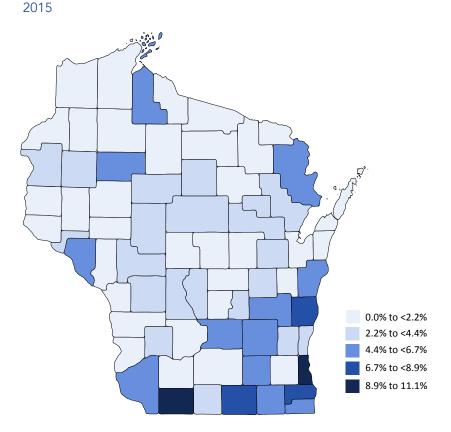
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

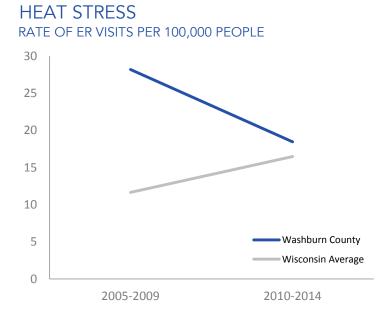
PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

$\begin{array}{l} \mbox{CHILDHOOD LEAD POISONING} \\ \mbox{Percent of tested children with blood lead} \geq 5 \ \mu g/dL \end{array}$

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

I 8.4 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 257.2 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

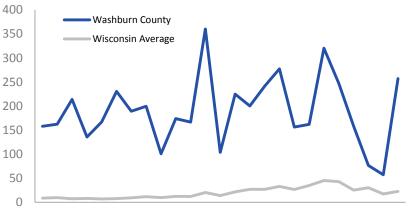
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

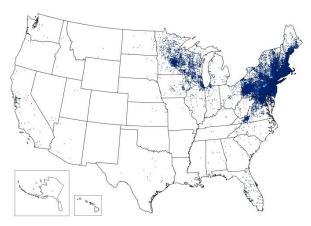
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

• 43.1 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

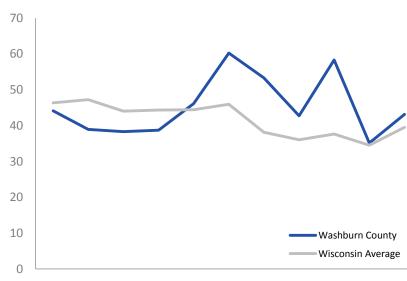
• 9.5

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 71.5

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 31.5
 HEART ATTACK
 RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

STATEWIDE: 27.4

🕖 Above state value 🛛 🧭 At or below state value 🔹 ^ Suppressed


ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

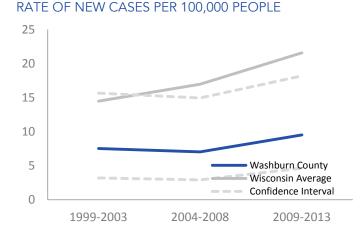
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

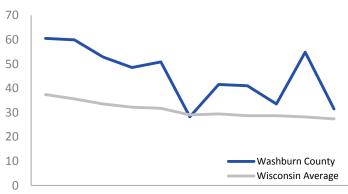
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

ARSENIC
AVERAGE CONCENTRATION
IN PUBLIC WATER (μg/L)

STATEWIDE: 1.4

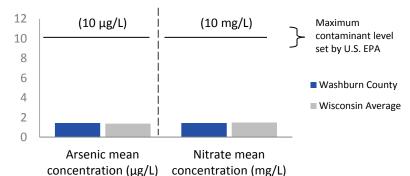
Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

 1.4
 NITRATE
 AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)
 69.79%
 FLUORIDE
 PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 1.5

preferred)


At or below state value (with exception

of fluoride where above state value is

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY WASHBURN COUNTY

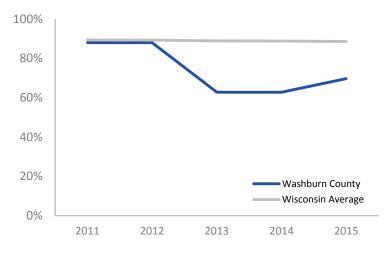
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

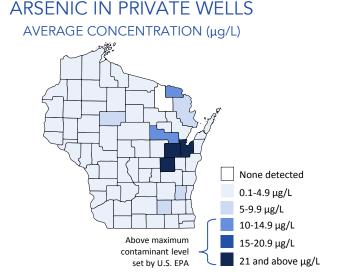

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

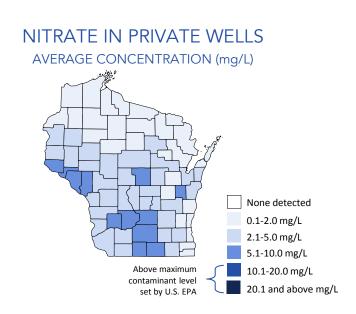
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

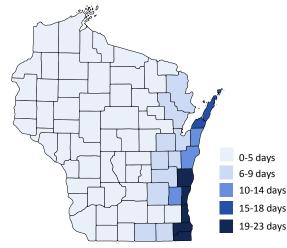
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 STATEWIDE: 9.1
STATEWIDE: 9.1

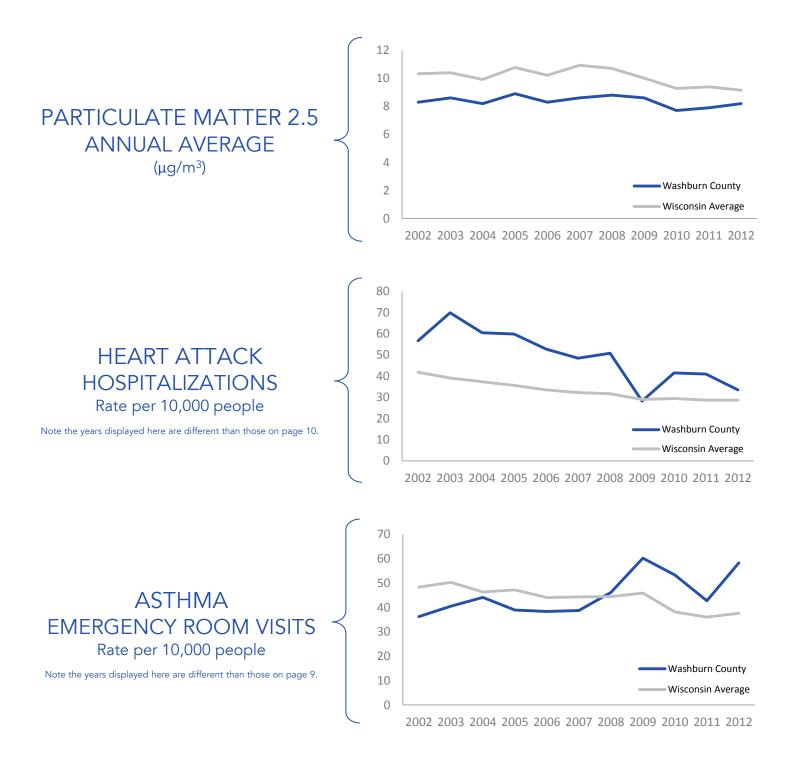
🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.


OZONE

ANNUAL DAYS ABOVE STANDARD (2012)

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

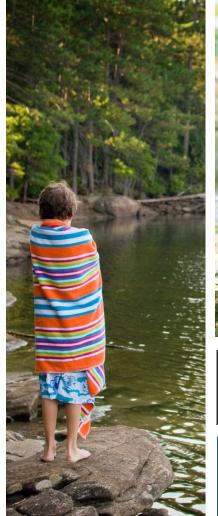
Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht


WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

WASHINGTON COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

WASHINGTON COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS WASHINGTON COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 4.0

CARBON MONOXIDE POISONING

RATE OF ER VISITS RELATED TO CO PER 100,000

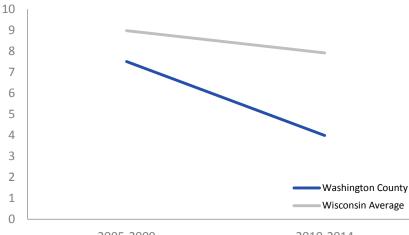
STATEWIDE: 7.9

• 4.4%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

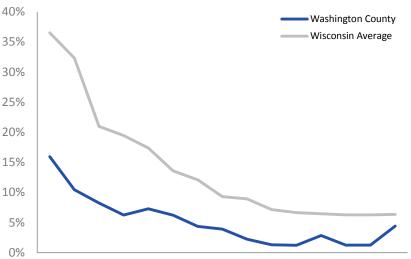
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

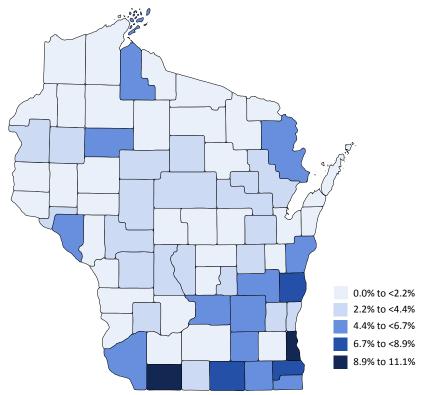
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL

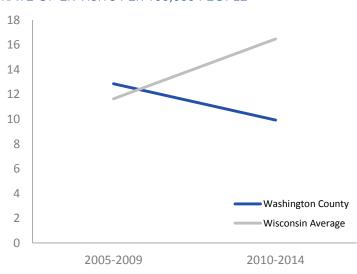
2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

P.9.9
HEAT STRESS
RATE OF ER VISITS
PER 100,000 PEOPLE
STATEWIDE: 16.5


 2.2
 LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

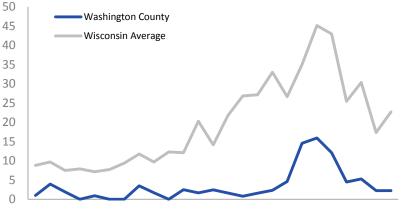
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

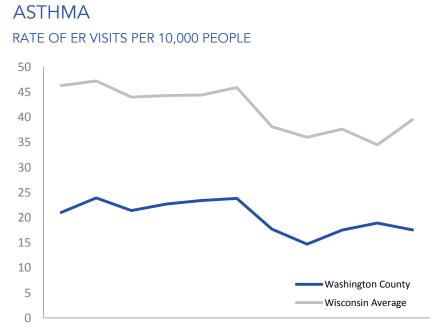
ITT STATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 23.9

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 57.3

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • 26.8 HEART ATTACK RATE OF HOSPITALIZATIC

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


🔋 Above state value 🛛 🧭 At or below state value 🔹 ^ Suppressed

ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

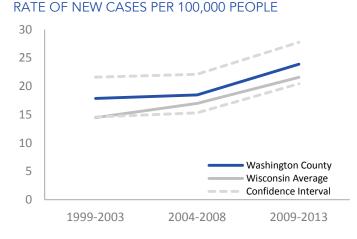
The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

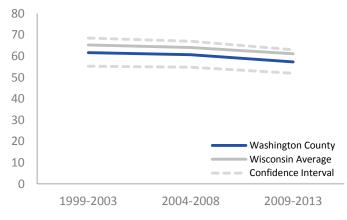
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 9

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

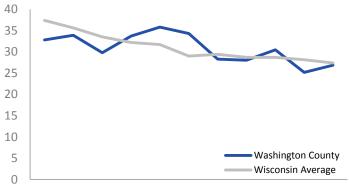

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

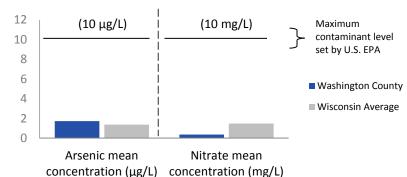
STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 82.4%
FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY WASHINGTON COUNTY

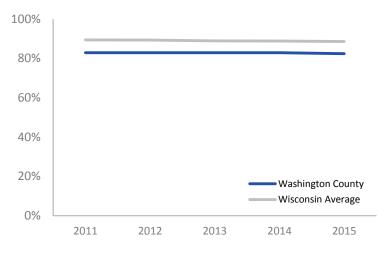
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

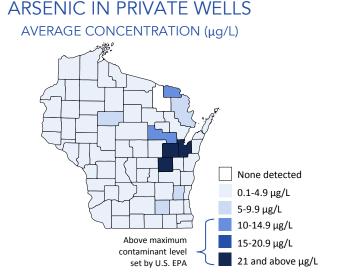

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

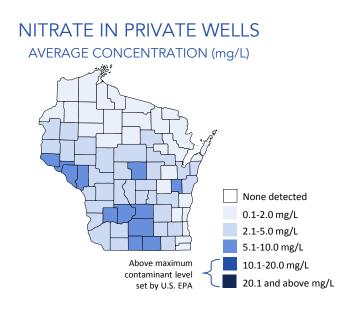
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



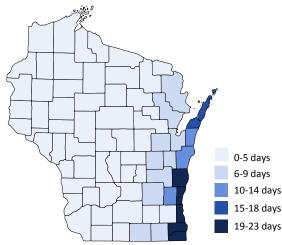

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

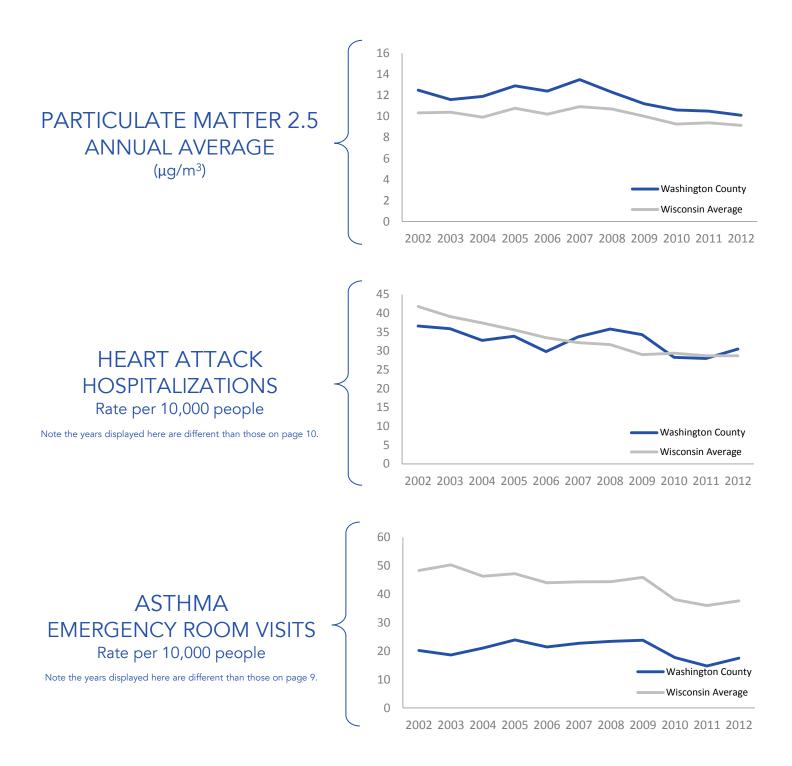
12
 OZONE
 ANNUAL DAYS ABOVE STANDARD
 STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **10.1 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

4 Above state value
At or below state value
Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

2017

WAUKESHA COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!

How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

WAUKESHA COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS WAUKESHA COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 6.4

CARBON MONOXIDE POISONING

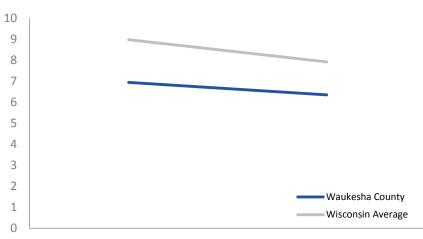
RATE OF ER VISITS RELATED TO CO PER 100,000

STATEWIDE: 7.9

• 1.2%

CHILDHOOD LEAD POISONING

 $\begin{array}{l} \mbox{PERCENT OF TESTED CHILDREN} \\ \mbox{WITH BLOOD LEAD} \geq 5 \ \mbox{\mug/dL} \end{array}$


STATEWIDE: 6.4%

Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

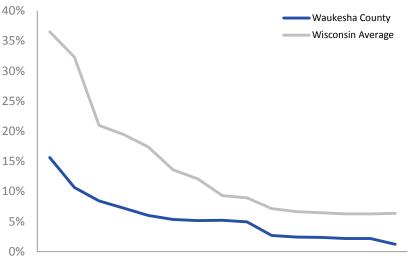
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

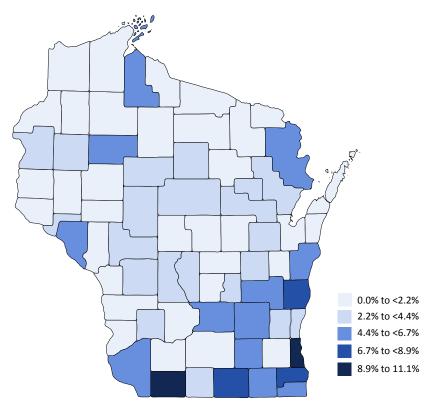
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

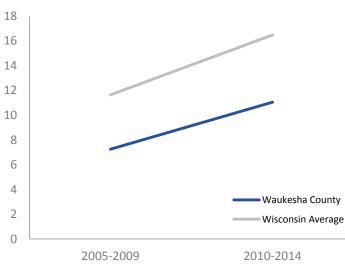
CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ${\geq}5~\mu\text{g/dL}$ 2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


■ 11.0 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 ■ 10.3
LYME DISEASE
RATE OF CASES
PER 100,000 PEOPLE
STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

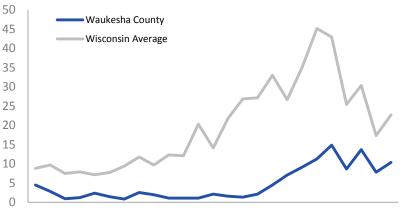
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

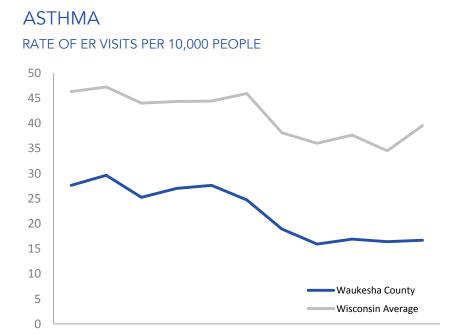
■ 16.7 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

• 25.1

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 54.7

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • **19.7** HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value At or below state value Suppressed

ASTHMA

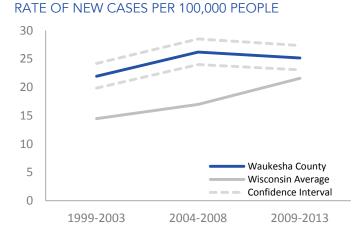
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

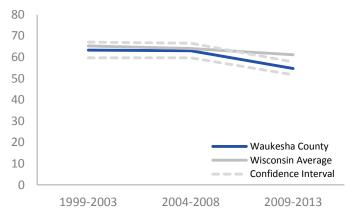
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

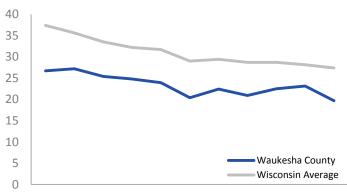
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> B 2.2 ARSENIC
> AVERAGE CONCENTRATION IN PUBLIC WATER (μg/L)

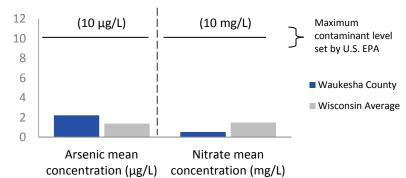
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) 80.5%
FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY WAUKESHA COUNTY

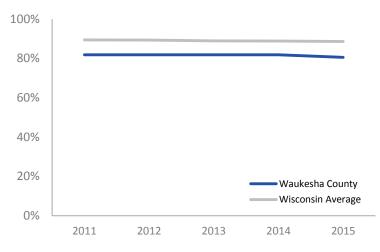
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

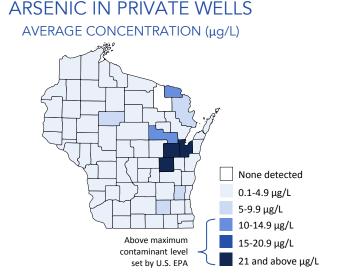

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

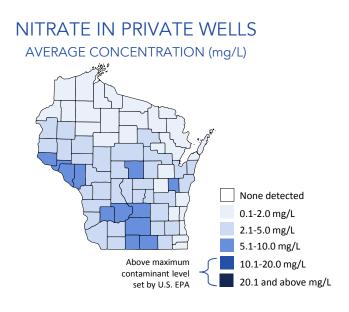
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



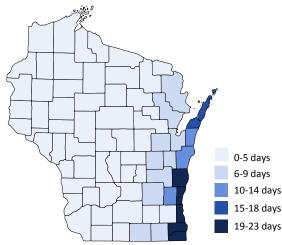

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

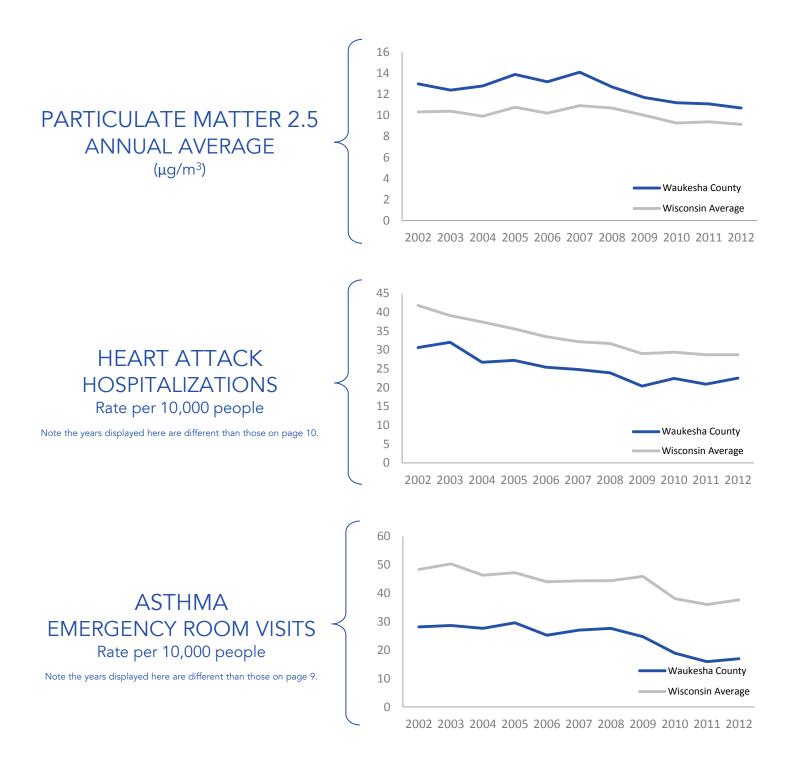
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **10.7 PARTICULATE MATTER 2.5** ANNUAL AVERAGE (μg/m³)
 STATEWIDE: 9.1

4 Above state value
At or below state value
Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

WAUPACA COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

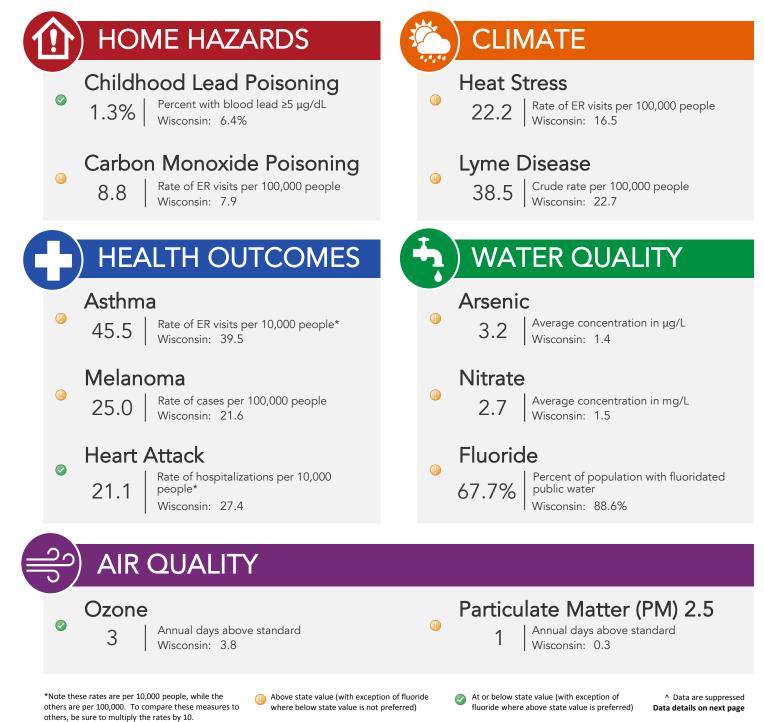
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

WAUPACA COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

HOME HAZARDS WAUPACA COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

8.8

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

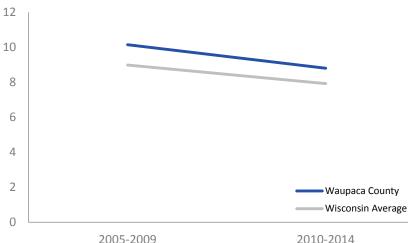
STATEWIDE: 7.9

1.3%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5 \mu g/dL$

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

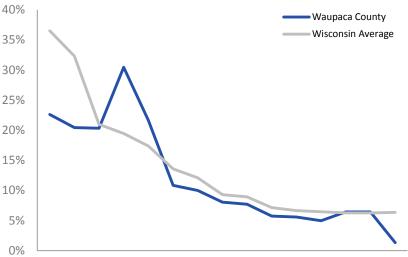
Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

CHILDHOOD LEAD POISONING

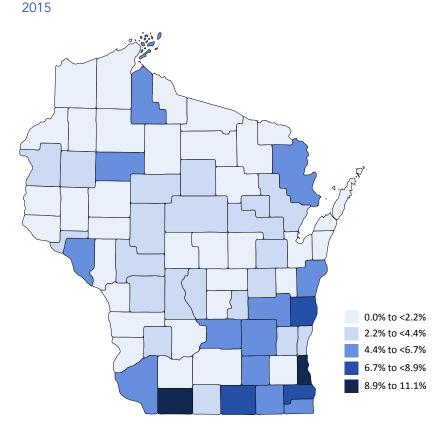
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

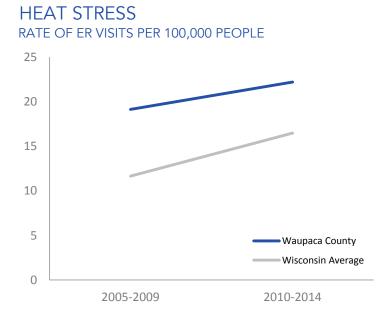
PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

$\begin{array}{l} \mbox{CHILDHOOD LEAD POISONING} \\ \mbox{PERCENT OF TESTED CHILDREN WITH BLOOD LEAD} \geq 5 \ \mu g/dL \end{array}$

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

O 222.2 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 Base 38.5
LYME DISEASE
RATE OF CASES
PER 100,000 PEOPLE
STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

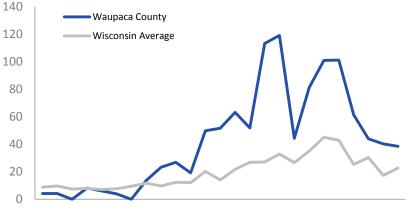
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

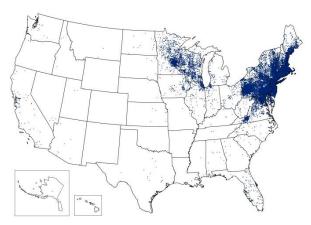
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

• 45.5 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

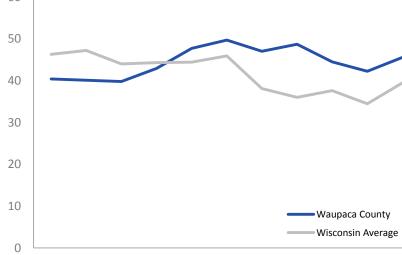
• 25.0

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 64.7

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • 21.1

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4

🕖 Above state value 🛛 📀 At or below state value 🔷 At or below state value 🔷 Suppressed


ASTHMA

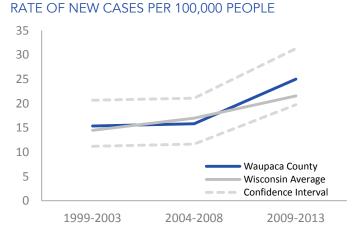
Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

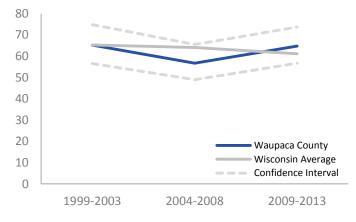
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

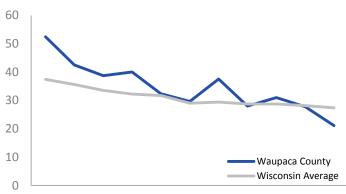

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> S.Ζ ARSENIC
> AVERAGE CONCENTRATION
> IN PUBLIC WATER (μg/L)

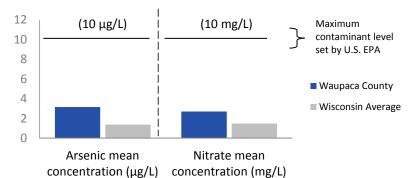
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

2.7 NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) • 67.7%

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY WAUPACA COUNTY

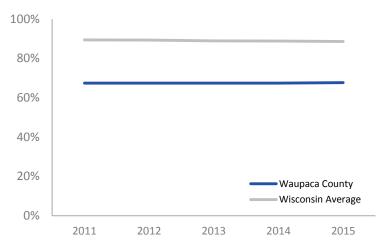
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

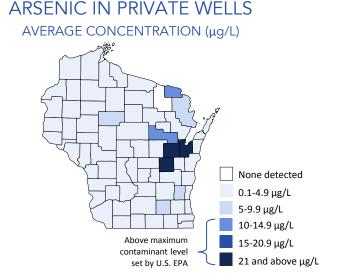

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

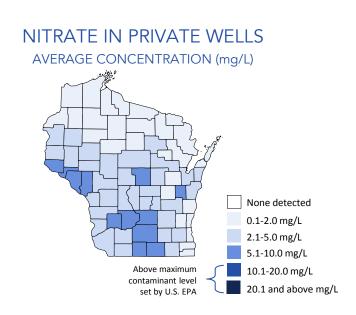
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



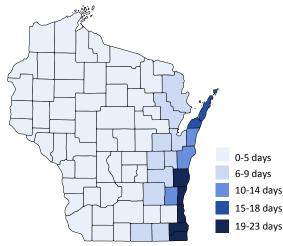

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

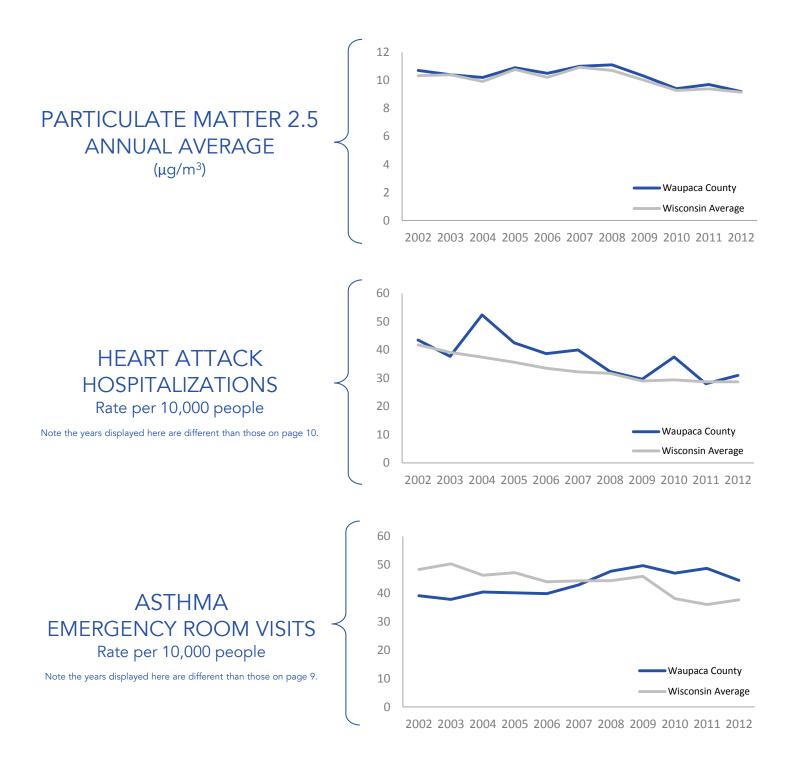
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 9.2
PARTICULATE MATTER 2.5
ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

O Above state value
O At or below state value
A Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

WAUSHARA COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

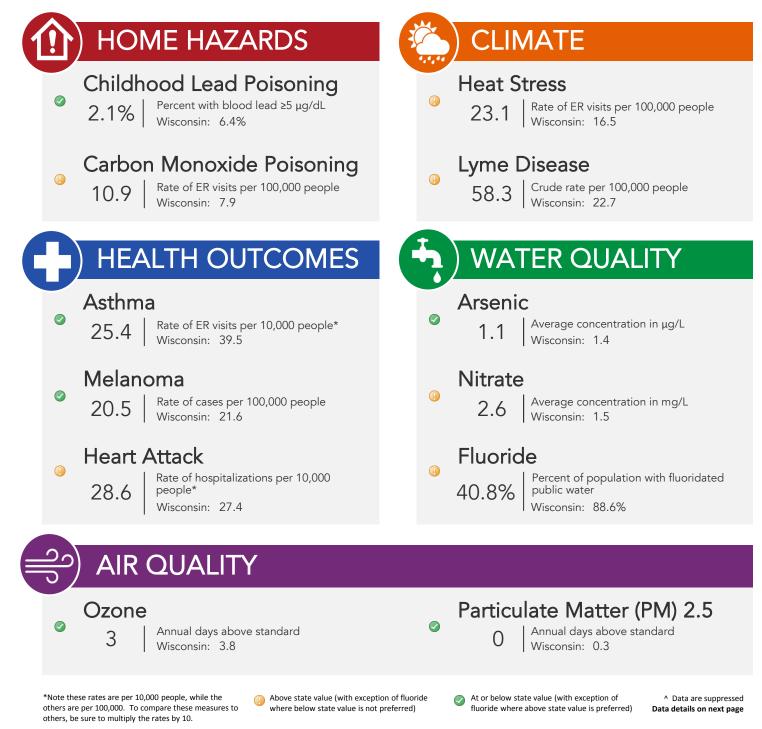
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

WAUSHARA COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(1) HOME HAZARDS WAUSHARA COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 10.9

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

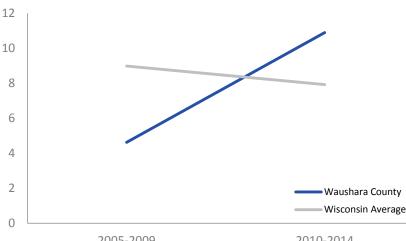
STATEWIDE: 7.9

• 2.1%

CHILDHOOD LEAD POISONING

 $\begin{array}{l} \mbox{PERCENT OF TESTED CHILDREN} \\ \mbox{WITH BLOOD LEAD} \geq 5 \ \mbox{\mug/dL} \end{array}$

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

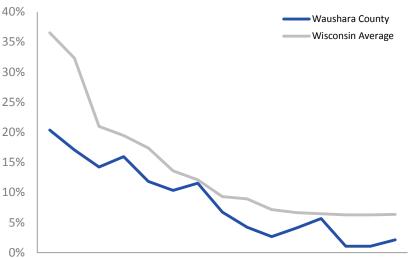
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

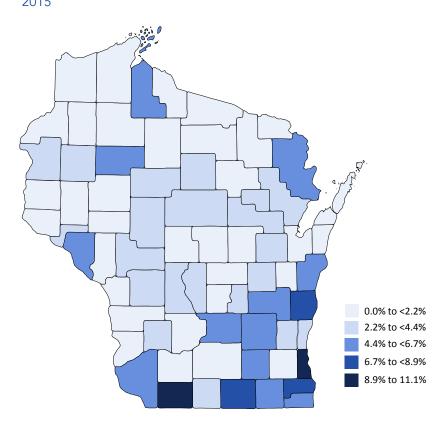
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD ≥5 µg/dL 2015

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

23.1 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 State of cases PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

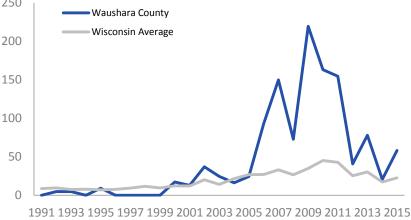
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infectedRAblack-legged tick (*Ixodes scapularis*) and is becoming250more common in Wisconsin. Lyme disease was the200fourth highest reported notifiable communicable200disease in 2015.200

The highest number of cases are typically reported ¹⁵⁰ in the northwestern region of Wisconsin, but in recent years cases have increased in the central and ¹⁰⁰ eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

25.4 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5

20.5

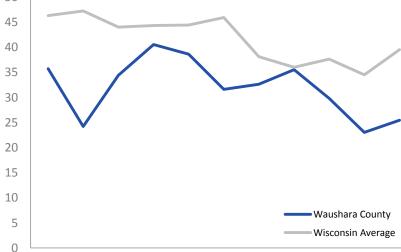
MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6

• 72.0 LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1

28.6 HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

STATEWIDE: 27.4

Above state value At or below state value ^ Suppressed


ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

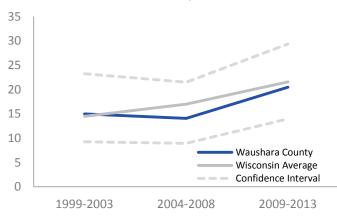
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our asthma disparities survillance brief, available in the resources section of our website.

ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE 50 45

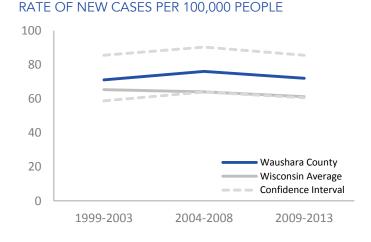
DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 9

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

MELANOMA AND LUNG CANCER


Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.


The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

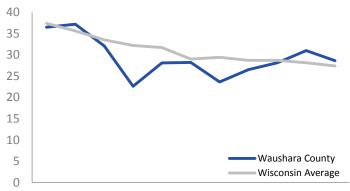
Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (<u>dhs.wisconsin.gov/epht</u>).

MELANOMA

LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

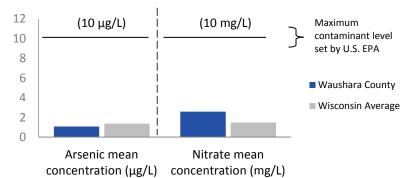
STATEWIDE: 1.4

 Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

2.6 NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) • **40.8%** FLUORIDE

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY WAUSHARA COUNTY

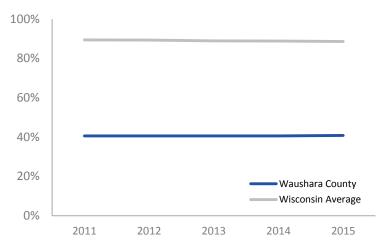
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

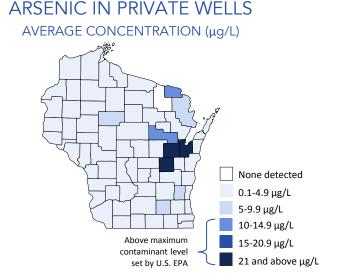

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

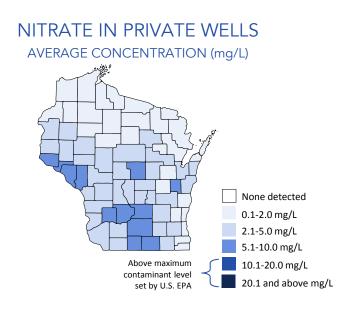
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER

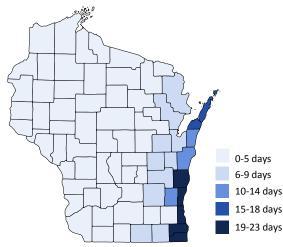



*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

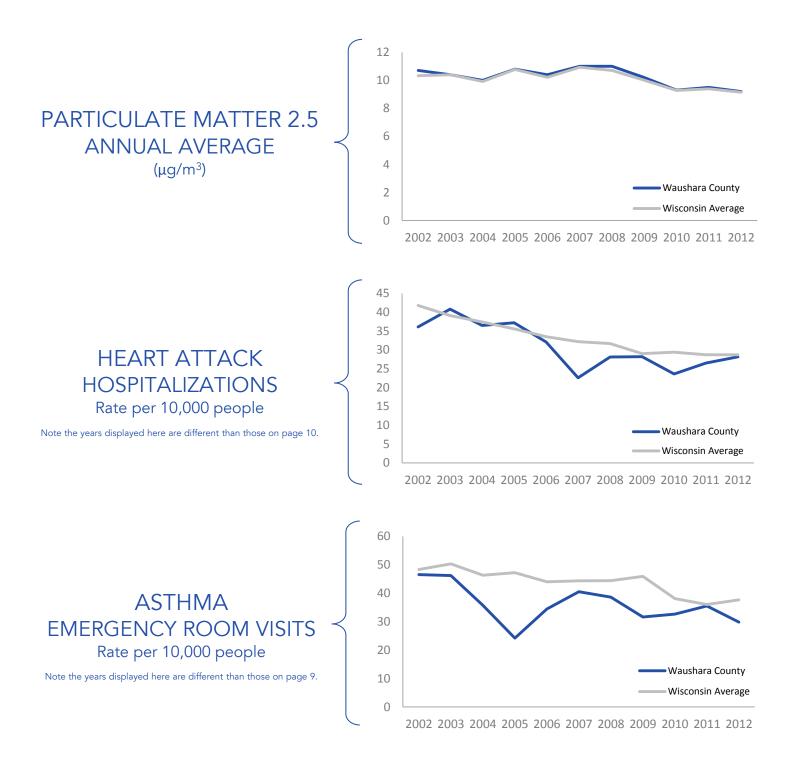
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 9.2
PARTICULATE MATTER 2.5
ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

2017

WINNEBAGO COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

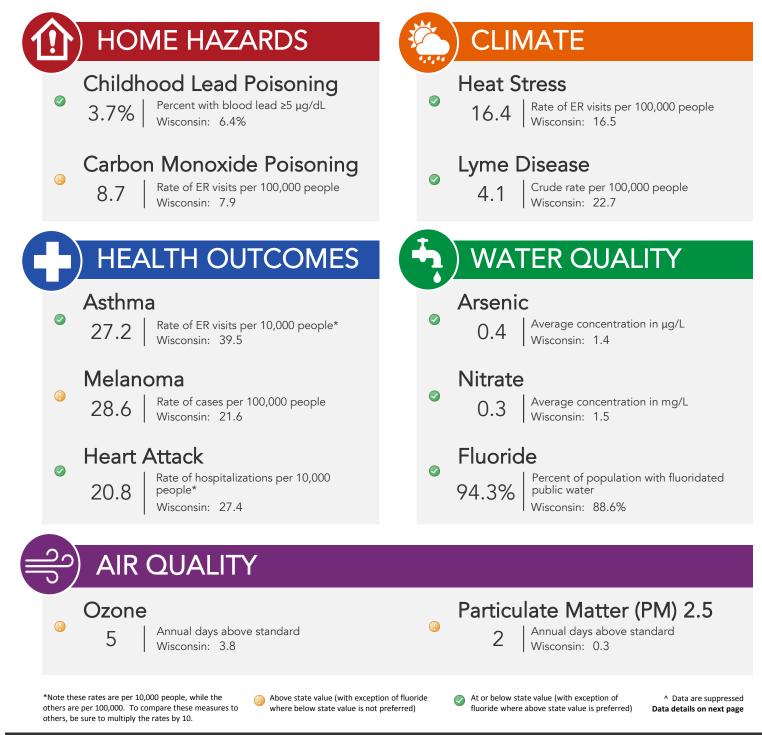
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

WINNEBAGO COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health WISCONSIN

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

(HOME HAZARDS WINNEBAGO COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

• 8.7

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

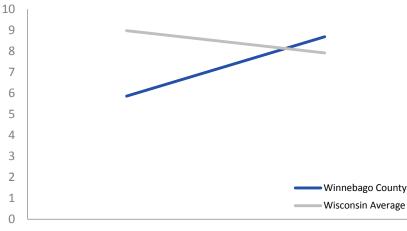
STATEWIDE: 7.9

• 3.7%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

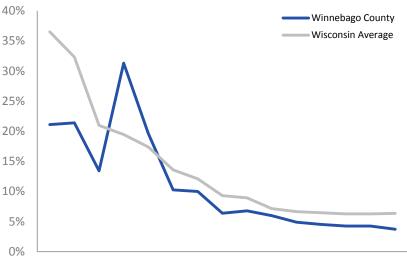
CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

2010-2014

CHILDHOOD LEAD POISONING

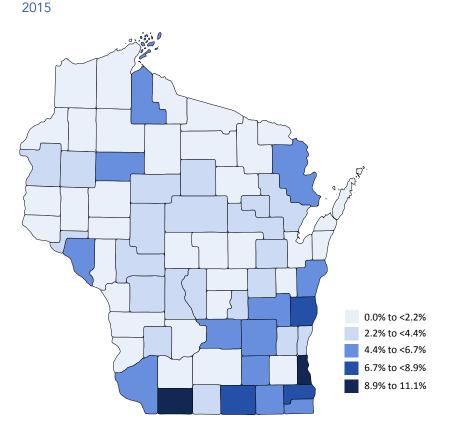
There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).


CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

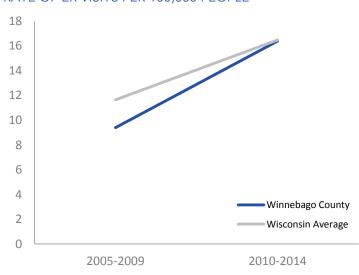
$\begin{array}{l} \mbox{CHILDHOOD LEAD POISONING} \\ \mbox{PERCENT OF TESTED CHILDREN WITH BLOOD LEAD} \geq 5 \ \mu g/dL \end{array}$

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.

To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.


■ 16.4 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 ● 4.1
LYME DISEASE RATE OF CASES PER 100,000 PEOPLE STATEWIDE: 22.7

Above state value

At or below state value ^

^ Suppressed

HEAT STRESS

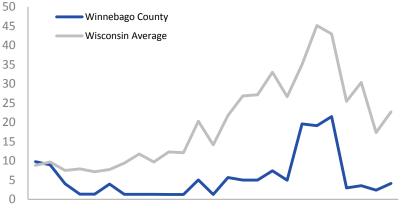
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

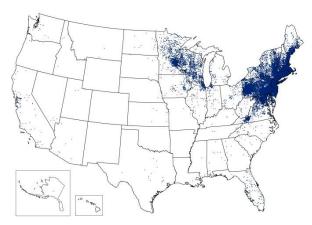
The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.


Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

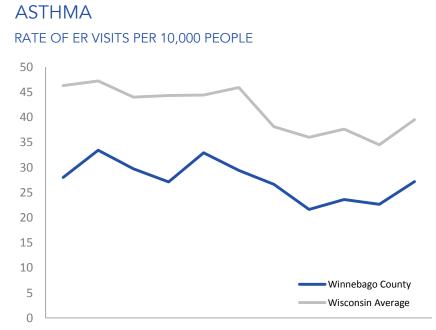
Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

• 27.2 ASTHMA RATE OF ER VISITS PER 10,000 PEOPLE STATEWIDE: 39.5 • **28.6**

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 62.2 LUNG CANCER

RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • 20.8

HEART ATTACK RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


🕖 Above state value 🛛 🧭 At or below state value 🔹 ^ Suppressed

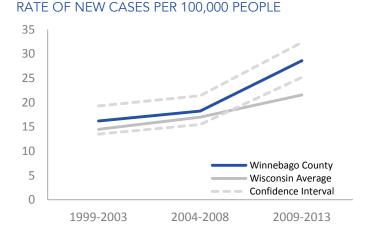
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

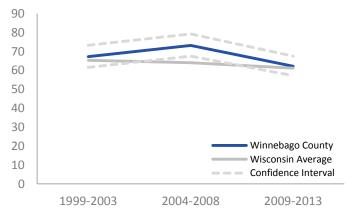
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

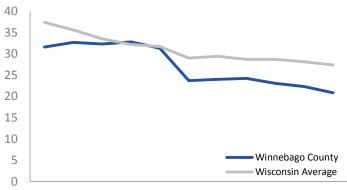

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

^{2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014}

BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with

> ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)

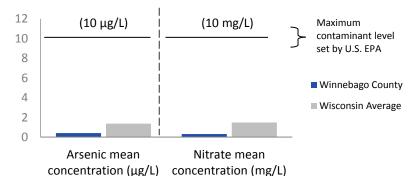
STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

NITRATE AVERAGE CONCENTRATION IN PUBLIC WATER (mg/L)

STATEWIDE: 1.5


At or below state value (with exception of fluoride where above state value is preferred) • 94.3%

PERCENT OF POPULATION WITH FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY WINNEBAGO COUNTY

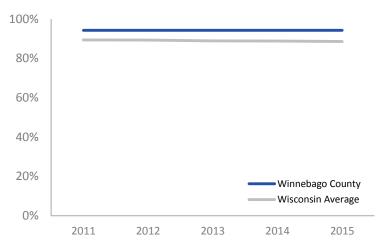
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

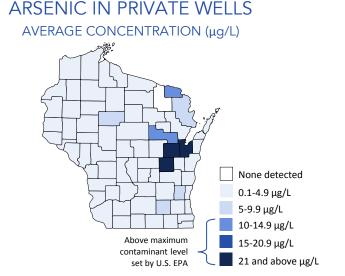

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

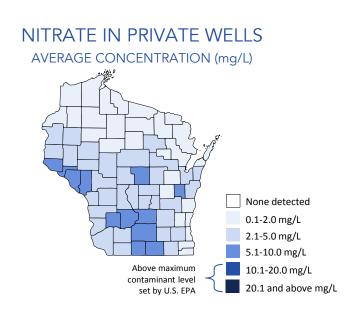
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER




*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

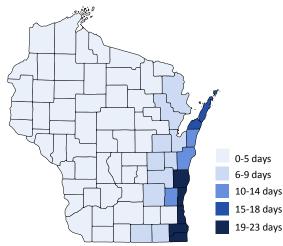
Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND

Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.


Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

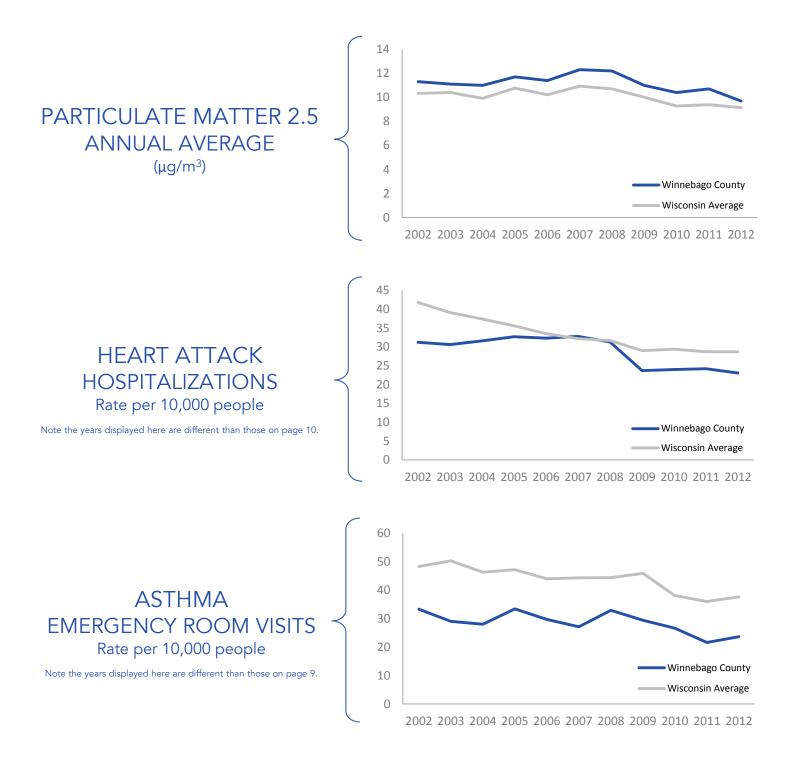
OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8 2

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 **9.7 PARTICULATE MATTER 2.5**ANNUAL AVERAGE (µg/m³)
STATEWIDE: 9.1

🕓 Above state value 🛛 📀 At or below state value 🔹 ^ Suppressed

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)

WOOD COUNTY ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

HOW TO USE ENVIRONMENTAL PUBLIC HEALTH TRACKING DATA

COMMUNITY HEALTH ASSESSMENTS

Tracking data can help flesh out your community health assessment and help meet state requirements.

COMMUNITY HEALTH IMPROVEMENT PLANS

Use Tracking data and *Ideas for Taking Action* to help prioritize environmental health and plan strategies for community improvement. Use the data to track progress in meeting your goals.

RESEARCH

Tracking data can be used to explore answers to environmental health research questions.

MEDIA STORIES

Strengthen your interview or article with facts and figures from Tracking and our resources.

SOCIAL MEDIA

Localize your posts with data from your community.

ACCREDITATION

The profiles can be used to address Public Health Accreditation Board standards; for example, <u>Standard</u> <u>1.3</u>—Analyze public health data to identify trends in health problems, environmental public health hazards, and social and economic factors that affect the public's health.

GRANT PROPOSALS

Tracking data and resources can help you and your team develop rationale for funding requests. These data can help justify existing programs and show where work needs to be done.

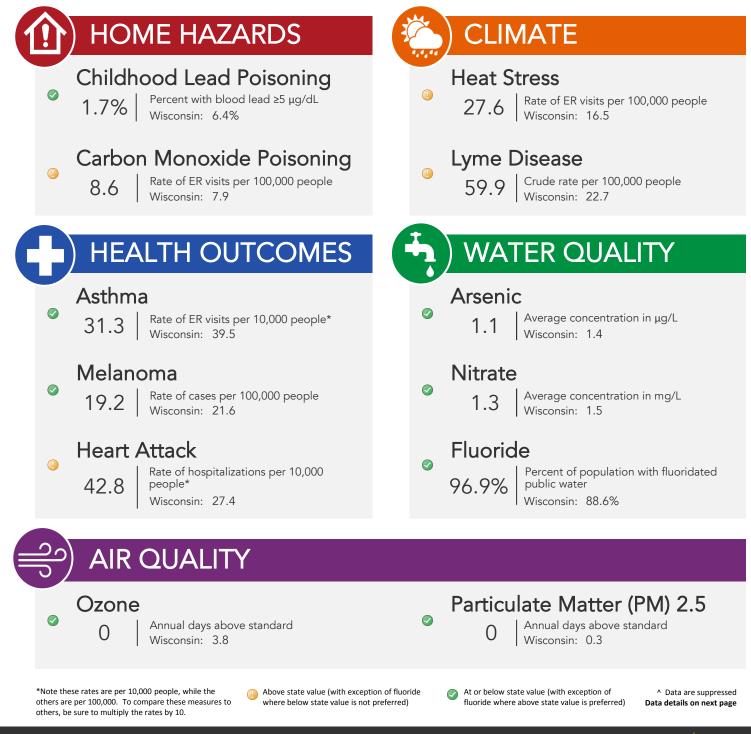
EDUCATION AND OUTREACH

When creating programs and outreach materials for your community, Tracking data can help you make your case and show the extent of the problem.

POLICY DEVELOPMENT

Tracking data and profiles contain measures that can be used to identify the need for a policy. Once a policy is in place, the data can be used as a baseline to track progress over time.

If you have questions about how to integrate the data into your work, <u>let us know</u>!


How have you used your county's profile? Tell us about it!

> dhstracking@wi.gov 608-267-2488

WOOD COUNTY

DASHBOARD | 2017 ENVIRONMENTAL HEALTH PROFILE

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM Bureau of Environmental and Occupational Health

Wisconsin Department of Health Services | Division of Public Health www.dhs.wisconsin.gov/epht | dhstracking@wi.gov | 608-267-2488

DASHBOARD DATA DETAILS

Below are the abbreviated references for the data presented in the dashboard. Note that some measures have more years of data available on the Wisconsin Tracking portal. For additional details on the data, see page 15. For more information about age-adjustment and other terms referenced in this profile, visit the Wisconsin Tracking Program's Glossary of Terms or our Tracking 270 tutorial, both available on our website (<u>dhs.wisconsin.gov/epht</u>).

HOME HAZARDS

Childhood Lead Poisoning: Percent of children (less than six years of age) tested who had a blood lead level ≥5 µg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Carbon Monoxide (CO) Poisoning: Age-adjusted rate of emergency room visits related to CO poisoning Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

CLIMATE

Lyme Disease: Crude rate of confirmed Lyme disease cases Source: Wisconsin Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

Heat Stress: Age-adjusted rate of emergency room visits related to heat stress Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: Averaged data from 2010-2014

HEALTH OUTCOMES

Melanoma: Age-adjusted rate of new cases reported by health care providers Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Years displayed: 2009-2013

Asthma: Age-adjusted rate of emergency room visits related to asthma Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

Heart Attack: Age-adjusted rate of emergency room visits related to heart attack Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2014

WATER QUALITY

Arsenic and Nitrate: Measured concentrations from active public water systems Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources Years displayed: Averaged data from 2013-2015

Fluoride: Percent of population with access to fluoridated public water Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services Year displayed: 2015

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) and Ozone: Monitored and modeled estimates of air quality readings Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention Year displayed: 2012

HOME HAZARDS WOOD COUNTY

BACKGROUND

Lead and carbon monoxide (CO) poisoning are two home hazards monitored by the Wisconsin Environmental Public Health Tracking Program.

Carbon monoxide poisoning prevents oxygen from getting to the body, which can damage tissue and even cause death.

In children, lead poisoning slows growth and development, particularly in the brain. Lead poisoning is also associated with increased incarceration and poor academic outcomes.

8.6

CARBON MONOXIDE

POISONING RATE OF ER VISITS RELATED TO CO PER 100,000

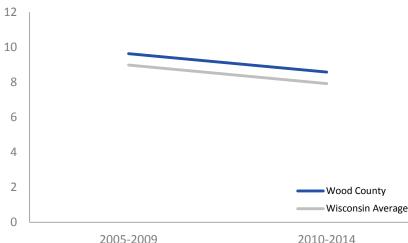
STATEWIDE: 7.9

1.7%

CHILDHOOD LEAD POISONING

PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5 \mu g/dL$

STATEWIDE: 6.4%


Above state value

At or below state value

^ Suppressed

CARBON MONOXIDE

RATE OF ER VISITS PER 100,000 PEOPLE

CARBON MONOXIDE POISONING

Carbon monoxide (CO) is a toxic gas that cannot be seen or smelled. CO is created whenever fuel or other materials are burned. Wisconsin state law requires that all homes have a carbon monoxide detector on every level.

CO poisoning is also a risk in indoor ice arenas or recreational facilities where fuel-powered equipment (e.g., ice resurfacers, cars, motorbikes, go carts, etc.) is used. These facilities are not required to have CO detectors.

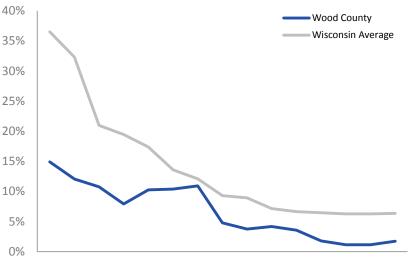
2010-2014

DIVE DEEPER INTO THE DATA: dhs.wisconsin.gov/epht Wisconsin Environmental Public Health Tracking | 5

CHILDHOOD LEAD POISONING

There is no safe level of lead in the human body. Even very low levels of exposure can cause harmful health effects. Blood lead levels are measured in micrograms per deciliter (µg/dL). The Centers for Disease Control and Prevention defines lead poisoning at or above 5 µg/dL.

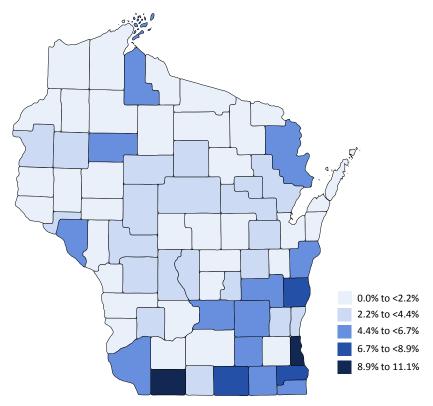
The percentage of children (less than six years of age) tested with a blood lead level greater than or equal to 5 μ g/dL has declined over the past 14 years in most Wisconsin counties. This decline is due in part to prevention and outreach efforts that have happened throughout the state.


Together we have made great progress, but there is still work to be done to eliminate lead poisoning for all children.

In most counties, the percentage of children poisoned is below 5%. However, counties vary greatly in the number of children they have tested for lead poisoning. It should be noted that high rates may reflect fewer children tested. For example, if a county tested eight children and one was poisoned, the percentage poisoned will be quite high.

To explore your county rate and see how many children were tested, how many were poisoned, and view data at the census tract level, take a look at our data portal (<u>dhs.wisconsin.gov/epht</u>).

CHILDHOOD LEAD POISONING


PERCENT OF TESTED CHILDREN WITH BLOOD LEAD $\geq 5~\mu g/dL$

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

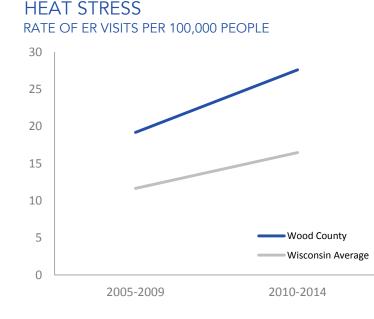
CHILDHOOD LEAD POISONING PERCENT OF TESTED CHILDREN WITH BLOOD LEAD 25 µg/dL

2015 PERCENT OF TESTED CHILDREN WITH BLOOD LEAD \geq 5 µg/dL

BACKGROUND

Over the past 60 years, Wisconsin has become generally warmer and wetter. Changes in the climate may lead to more precipitation and flooding, temperature extremes (very hot and very cold days), drought, and more carriers of disease (e.g., mosquitoes and ticks). Extreme weather can contribute to mental health problems, water and vectorborne diseases, allergies, water and food insecurity, and even death.

In this section, we focus on heat stress and Lyme disease, two climate-related health outcomes.


To learn more about the climate and health connection and work being done by the Wisconsin Climate and Health Program, visit <u>dhs.wisconsin.gov/climate</u>.

27.6 HEAT STRESS RATE OF ER VISITS PER 100,000 PEOPLE STATEWIDE: 16.5 • 59.9
LYME DISEASE
RATE OF CASES
PER 100,000 PEOPLE
STATEWIDE: 22.7

Above state value

At or below state value

^ Suppressed

HEAT STRESS

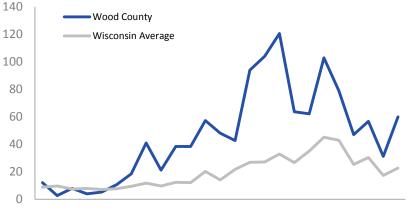
Heat stress encompasses a range of conditions including heat rash, heat syncope (fainting), heat cramps, and heat exhaustion.

Any individual can develop heat stress when involved in intense physical activity or when it is hot.

Certain populations, such as older adults who live alone or have limited social contacts, people who work or play outside, and people without access to air conditioning are at increased risk of heat-related injury.

To learn more about historical extreme heat—such as the number of days in which the heat index was at or above 90°F—visit our data portal.

LYME DISEASE


Lyme disease is spread by the bite of an infected black-legged tick (*Ixodes scapularis*) and is becoming more common in Wisconsin. Lyme disease was the fourth highest reported notifiable communicable disease in 2015.

The highest number of cases are typically reported in the northwestern region of Wisconsin, but in recent years cases have increased in the central and eastern regions.

The data in the crude rate include confirmed cases of Lyme disease—not probable or estimated cases. It should be noted that in 2008 and 2012, Wisconsin's criteria for reporting Lyme were revised (see data details on page 15 for more information).

LYME DISEASE

RATE OF CONFIRMED CASES PER 100,000 PEOPLE

^{1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015} Case definition changed in 2008 and again in 2012; see data details on page 15 for more information.

The new criteria in 2012 require reporting and follow-up only for cases with an erythema migrans (EM) rash. To compensate for this change, epidemiologists used a statistical method to estimate the true number of cases based on the number of total laboratory reports for each year since 2012. As such, rates of confirmed cases might appear to decrease since 2012, but this is likely due to the change in case definition, not from a reduced burden of Lyme disease.

Estimated and probable cases are available at the state-level on the Tracking portal. The crude rate of confirmed cases reported here is an underestimate of the true rate of Lyme disease.

LYME DISEASE AT THE NATIONAL LEVEL

ONE DOT PLACED RANDOMLY WITHIN COUNTY OF RESIDENCE FOR EACH REPORTED CASE

2015

Maps courtesy of Centers for Disease Control and Prevention.

Wisconsin's climate has become generally warmer and wetter in recent decades, and these changes in weather patterns can provide favorable conditions for ticks. Increased temperatures with higher humidity can enhance tick survival. Climatic shifts contribute toward the expanded geographic distribution of ticks as well as a longer season of tick activity and potential for Lyme disease transmission. Other factors such as host populations (e.g., deer and mice), awareness of Lyme disease, and land use changes also impact Lyme disease rates.

BACKGROUND

Asthma, melanoma (a type of skin cancer), lung cancer, and heart attack are four of the many health topics collected by the Wisconsin Environmental Public Health Tracking Program. Each of these measures is strongly linked to one or more environmental factors.

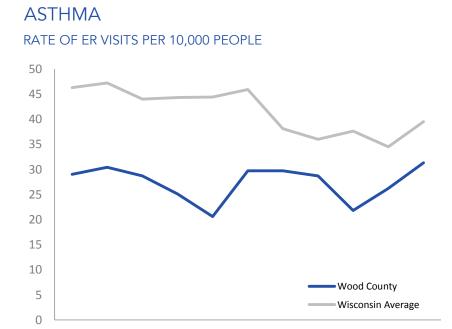
STATEWIDE: 39.5
STATEWIDE: 39.5

• 19.2

MELANOMA RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 21.6 • 57.4

LUNG CANCER RATE OF NEW CASES PER 100,000 PEOPLE STATEWIDE: 61.1 • **42.8** HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE STATEWIDE: 27.4


Above state value 🛛 🔗 At or below state value 🔹 ^ Suppressed

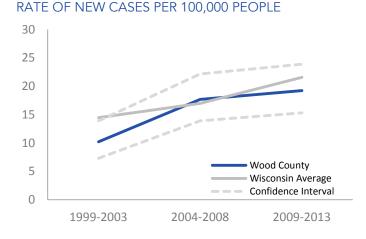
ASTHMA

Asthma is a disease that affects breathing and limits the ability to get oxygen to the lungs. Asthma symptoms often happen because a person came in contact with a trigger, such as outdoor air pollution.

The overall rate of asthma emergency room visits in Wisconsin has declined slightly since 2004. Rates at the county level are more variable.

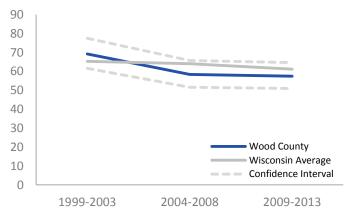
In Wisconsin, asthma rates vary considerably by race and ethnicity. Read more about these differences in our <u>asthma disparities survillance</u> <u>brief</u>, available in the resources section of our website.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


MELANOMA AND LUNG CANCER

Cancer is a term used for diseases in which abnormal cells divide without control and are able to invade other body parts. There are more than 100 different types of cancer. Melanoma is a cancer of the skin pigment cells and is the most deadly type of skin cancer. Lung cancer forms in the lung, usually in the cells lining the air passages, and is the leading cause of cancer deaths in the United States.

Both melanoma and lung cancer are strongly linked to environmental causes. Melanoma is linked to ultraviolet (UV) radiation, and lung cancer is related to radon and secondhand smoke. In addition to environmental exposures, lung cancer is also caused by smoking.

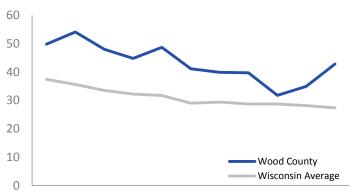

The rate of melanoma in Wisconsin is increasing over time, and nearly all Wisconsin counties are following the same upward trend. The Wisconsin rate of lung cancer has held relatively steady in recent years, with more variability by county.

Confidence intervals based on the county rate are on the charts below and are denoted with dotted gray lines. The closer the dotted lines are to the county line, the better (or more precise) the estimated county rate. For more information on interpreting confidence intervals, watch our Tracking 270 tutorial, available on the training tab of our website (dhs.wisconsin.gov/epht).

MELANOMA

RATE OF NEW CASES PER 100,000 PEOPLE

HEART ATTACK


A heart attack is a brief and severe health event in which the heart does not get enough oxygen because of a block in blood flow.

A number of studies have shown that high levels of air pollution can increase the number of hospital visits for heart attacks.

The overall rate of heart attack hospitalizations in Wisconsin has declined since 2004. Rates at the county level are more variable.

HEART ATTACK

RATE OF HOSPITALIZATIONS PER 10,000 PEOPLE

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

NITRATE

AVERAGE CONCENTRATION

IN PUBLIC WATER (mg/L) STATEWIDE: 1.5

At or below state value (with exception

of fluoride where above state value is

preferred)

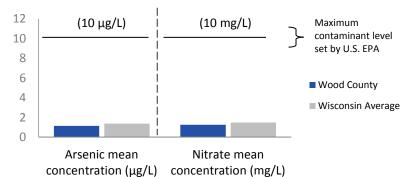
BACKGROUND

Water piped into your home, school, or workplace comes from either a public water system or a private well.

Two water contaminants of concern are arsenic and nitrate. Potential health effects of drinking water with high levels of arsenic include skin damage, circulatory system problems, and cancers (e.g., bladder and lung cancer). High nitrate levels may be linked with certain birth defects. Infants who consume drinking water with high nitrate levels are at risk of blue baby syndrome, a condition that limits the blood's ability to carry oxygen.

Communities should also know their levels of fluoride, a mineral in water that is often naturally-occurring and offers protection against tooth decay. You can read about your water's fluoridation levels in a consumer confidence report, which you can request from your water utility.

ARSENIC AVERAGE CONCENTRATION IN PUBLIC WATER (µg/L)


STATEWIDE: 1.4

Above state value (with exception of fluoride where below state value is not preferred) 96.9%
FLUORIDE
PERCENT OF POPULATION WITH
FLUORIDATED PUBLIC WATER

STATEWIDE: 88.6%

^ Suppressed

ARSENIC AND NITRATE MEAN CONCENTRATION LEVELS IN PUBLIC WATER (2013-2015)

ARSENIC AND NITRATE IN PUBLIC DRINKING WATER

Over half of Wisconsin households rely on public water for their water source. Public water is monitored and regulated by the Wisconsin Department of Natural Resources. All counties reported average arsenic and nitrate levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency.

WATER QUALITY WOOD COUNTY

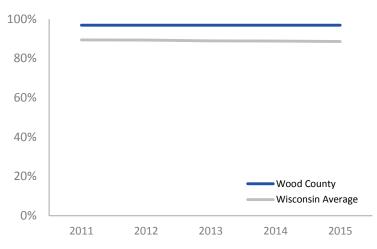
FLUORIDE IN PUBLIC DRINKING WATER

Community water fluoridation was selected as one of the 10 greatest public health achievements of the 20th century since it offers a low-cost, effective way of providing fluoride to a broad population to prevent tooth decay.*

Some water systems may not have enough natural fluoride to offer protection, so community water systems can add fluoride to bring the levels up to the U.S. Department of Health and Human Services' recommended level of 0.7 milligrams per liter (mg/L).

The fluoride data in this profile are collected from public water systems. The data include the percentage of the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

ARSENIC AND NITRATE IN PRIVATE DRINKING WATER

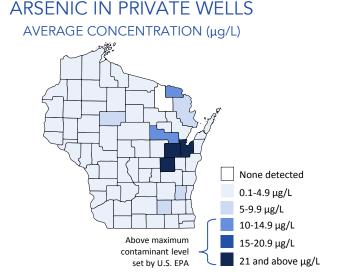

About four in 10 Wisconsin homes get their water from private wells. Well owners are responsible for monitoring and testing their wells. All private wells should be tested regularly to ensure the water is safe to use and drink.

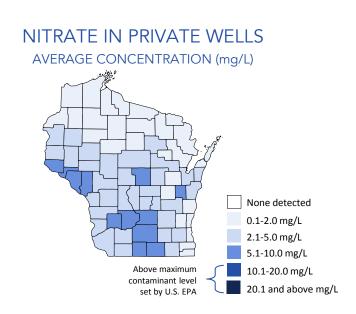
The University of Wisconsin-Stevens Point's Center for Watershed Science created a mapping tool to improve access to private well water data. The well data are voluntarily submitted by homeowners and do not include water quality information for all known wells.

County-specific measures for arsenic and nitrate in private wells are displayed below.

FLUORIDE

PERCENT OF POPULATION WITH ACCESS TO FLUORIDATED PUBLIC WATER



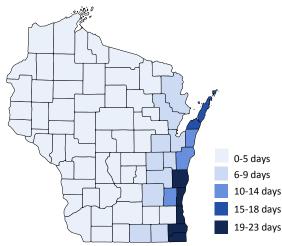

*Centers for Disease Control and Prevention. Ten Great Public Health Achievements in the 20th Century. https://www.cdc.gov/about/history/tengpha.htm

Five counties have average concentrations of arsenic above the 10 μ g/L maximum contaminant level. For nitrate, all counties are below the 10 mg/L maximum contaminant level.

The data displayed represent samples collected from 1988 to March 2017. The maps include results of 14,699 arsenic samples and 73,517 nitrate samples. The number of samples collected varies from year to year; accordingly, some years are better represented than others.

To explore data for the other water contaminants, search "UW Stevens Point Well Water Viewer" in your search engine.

BACKGROUND


Air pollution means that there are particles or gases in the air that should not be there. Two pollutants of concern are fine particulate matter and ozone. Particulate matter describes very tiny particles that settle in our lungs after being inhaled. The "2.5" in "particulate matter 2.5 ($PM_{2.5}$)" refers to the size of the particles, which are smaller than the width of a human hair.

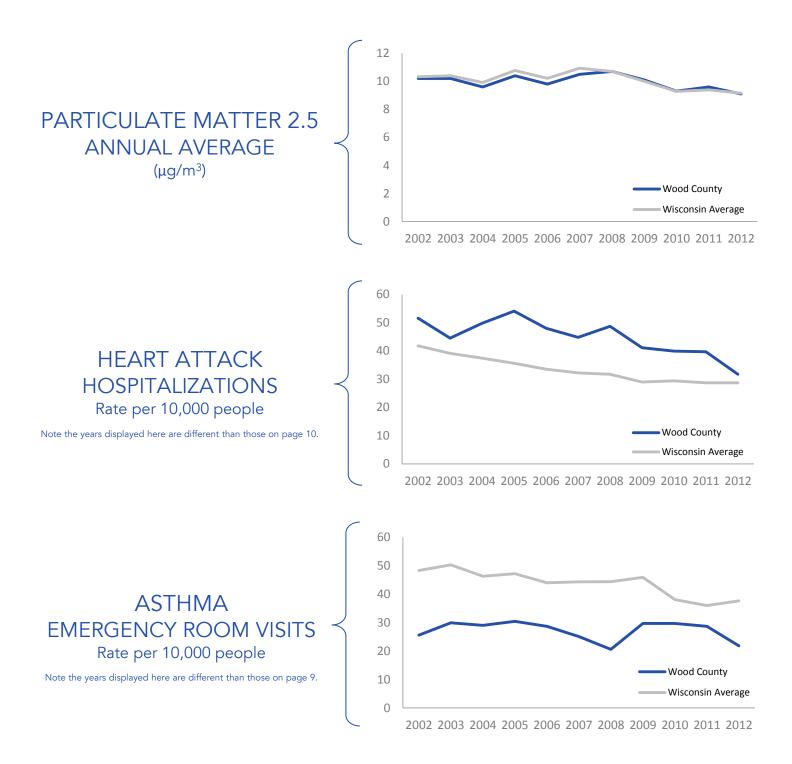
Ozone comes from vehicle emissions and industrial facilities. Both particulate matter and ozone can trigger health problems, especially in people with breathing conditions like asthma. Levels of these pollutants are measured by monitoring stations set up around the state. Counties without monitoring stations have estimated values.

OZONE ANNUAL DAYS ABOVE STANDARD STATEWIDE: 3.8

PARTICULATE MATTER 2.5 ANNUAL DAYS ABOVE STANDARD STATEWIDE: 0.3 PARTICULATE MATTER 2.5 ANNUAL AVERAGE (µg/m³) STATEWIDE: 9.1

OZONE ANNUAL DAYS ABOVE STANDARD (2012)

OZONE


The map to the left illustrates the annual number of days in which ozone was above the standard set by the U.S. Environmental Protection Agency. The fewer days above the standard, the better.

Counties on Wisconsin's eastern edge tend to have more days above the standard. Scientists hypothesize cool lake air can trap emissions. During warmer months, emissions can be pushed north by lake breezes, even from as far as Illinois and Indiana.*

*Pierce, B., et al. White Paper: Lake Michigan Ozone Study 2017.

PARTICULATE MATTER 2.5

Particulate matter 2.5 ($PM_{2.5}$) is so tiny that it can settle in a person's lungs or bloodstream after being inhaled. These particles are more common near busy roads and in areas with dusty industries. $PM_{2.5}$ has been linked to heart attacks and asthma attacks. Below are three charts showing how the annual average of $PM_{2.5}$, heart attack hospitalization rates, and asthma emergency room visits have fluctuated over the 2002-2012 time period (note the scales are different). In most Wisconsin counties, there has been a downward trend in all three measures over time.

DATA DETAILS

HOME HAZARDS

Lead Poisoning | Percent of children (less than six years of age) tested who had a blood lead level ≥5 μg/dL Source: Wisconsin Childhood Lead Poisoning Prevention Program, Bureau of Environmental and Occupational Health, Division of Public

Health, Wisconsin Department of Health Services Years displayed: 2001-2015, data from 2015 displayed on dashboard

Data details: Wisconsin blood lead testing data from children less than six years of age are reported to the Wisconsin Childhood Lead Poisoning Prevention Program. Data are de-duplicated such that they contain the most recent confirmatory (venous) test following an elevated screening (capillary) test. If no confirmatory test for the individual is available, the most recent screening test result is used.

Carbon Monoxide Poisoning | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data averaged from 2010-2014 displayed on dashboard

Data details: This measure includes carbon monoxide poisonings that were unintentional (fire- or non-fire-related) and of unknown intent. These data are from emergency room visit records. The measure includes cases with an ICD-9 code of 986 or cause of injury code E868.2, E868.3, E868.8, E868.9, E982.0, E982.1, E818, E825 , E838, E844, E867, E868, or E890-E899. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

CLIMATE

Heat Stress | Annual average rate of emergency room visits, age-adjusted per 100,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2005-2014, data from 2010-2014 are displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 992.0-992.9, or cause of injury code E900.0 or E900.9. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Lyme Disease | Crude rate of confirmed Lyme disease cases per 100,000 people

Source: Vectorborne Disease Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 1991-2015, data from 2015 are displayed on the dashboard

Data details: These data are from the Wisconsin Electronic Disease Surveillance System (WEDSS). County-level data are based on the county of residence of the case; some infections may have been acquired during travel to other areas. The crude rate numerator includes only confirmed cases and does not include probable or estimated cases. Confirmed cases of Lyme disease include: 1) those with an erythema migrans (EM) rash that is greater than or equal to 5 cm in diameter and diagnosed by a medical professional or 2) those with at least one non-EM confirmatory sign or symptom indicating late manifestation of disease (arthritis, Bell's palsy or other cranial neuritis, encephalomyelitis, lymphocytic meningitis, radiculoneuropathy, or 2nd or 3rd degree atrioventricular block) that also has laboratory evidence of infection that meets criteria. In 2008, the national surveillance case definition for Lyme disease introduced probable cases. In 2012, the criteria for reporting Lyme disease changed so only cases with an EM rash required follow-up. Read the data details on our data portal for more information.

HEALTH OUTCOMES

Asthma | Age-adjusted rate of emergency room visits per 10,000 people

Source: Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 9), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from emergency room visit records. This measure includes cases with an ICD-9 code of 493. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

Melanoma and Lung Cancer | Annual average rate of new cases, age-adjusted per 100,000 people

Source: Wisconsin Cancer Reporting System, Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services **Years displayed:** 1999-2013, data from 2009-2013 displayed on the dashboard

Data details: Rates are calculated from counts of new cancer cases reported to the Wisconsin Cancer Reporting System by health care providers in Wisconsin. Data for counties with fewer than six cases are suppressed to protect confidentiality. However, counties with zero cases are not suppressed. Direct age-adjustment is conducted using the 2000 U.S. standard population.

HEALTH OUTCOMES (continued)

Heart Attack | Age-adjusted rate of hospitalizations among persons age 35 and over per 10,000 people **Source:** Office of Health Informatics, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2004-2014 (page 10), 2002-2012 (page 14), data from 2014 displayed on the dashboard

Data details: These data are collected from inpatient hospital discharge records. This measure includes cases with an ICD-9 code of 410.0-410.92. Data for counties with fewer than five visits are suppressed to protect confidentiality. However, data from counties with zero visits are not suppressed. Our data do not include records from Wisconsin residents who seek care in border states and as such, are underrepresenting rates from border counties. See our portal data details for more information. Direct age-adjustment is conducted using the 2000 U.S. standard population.

WATER QUALITY

Arsenic | Mean concentration of arsenic (µg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Arsenic concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple arsenic mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Nitrate | Mean concentration of nitrate (mg/L) in public drinking water

Source: Bureau of Drinking Water and Groundwater, Wisconsin Department of Natural Resources

Years displayed: Averaged data from 2013-2015

Data details: Nitrate concentrations in drinking water are based on samples taken from active public community water systems. Because many counties did not have any samples for a given year, three years of data were aggregated (2013-2015). Some counties had multiple nitrate mean values (from different water systems), so the values were first averaged within a given county and then averaged across the years.

Fluoride | Percent of population with access to fluoridated public drinking water

Source: Wisconsin Oral Health Program, Division of Public Health, Wisconsin Department of Health Services

Years displayed: 2011-2015, data from 2015 displayed on dashboard

Data details: Data on fluoride in drinking water are based on samples taken from active public community water systems. The data represent the population on public drinking water that have access to fluoridated water, regardless of whether it is at the recommended level.

AIR QUALITY

Particulate Matter 2.5 (PM_{2.5}) | Annual Average $PM_{2.5}$ ($\mu g/m^3$); Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention

Years displayed: 2002-2012, data from 2012 are displayed on the dashboard

Data details: These measures include monitored and modeled estimates of $PM_{2.5}$ levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist. The data downloaded from the National Environmental Public Health Tracking portal (cdc.gov/ephtracking) for percent of days above standard were multiplied by 365 to get the annual number of days above U.S. Environmental Protection Agency standard. The U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) for a 24-hour average $PM_{2.5}$ concentration is 35 $\mu g/m^3$.

Ozone | Annual number of days above standard set by the U.S. Environmental Protection Agency

Source: National Environmental Public Health Tracking Network, Centers for Disease Control and Prevention **Year displayed:** 2012

Data details: This measure is the annual number of days with maximum eight-hour average ozone concentration over the U.S. Environmental Protection Agency's National Ambient Air Quality Standard (NAAQS) of 0.075 ppm. This measure includes monitored and modeled estimates of ozone levels. Modeled estimates are used to fill in gaps for days when monitoring does not occur or in counties where monitors do not exist.

TAKING THE NEXT STEP

Present to Stakeholders and Partners

We created a Profile Template Slide Deck as a guide for presentations. The slide deck is free to use and completely customizable. The notes section is full of ideas and considerations for tailoring your talk. Let us know if you need help making the slide deck work for you. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to download the template.

Plan Strategies for Taking Action

We know it's a challenge to translate data into action. To help get you started, we created a short menu of potential strategies for addressing the topics in this profile, called *Ideas for Taking Action*. To help communities of all sizes and resource levels, we organized by the scope of the strategy, from addressing knowledge, attitudes and skills to addressing laws and policies. Visit <u>dhs.wisconsin.gov/epht/profiles.htm</u> to access *Ideas for Taking Action*.

Join Our Quarterly Newsletter

Stay up-to-date on the latest Wisconsin Environmental Public Health Tracking news and resources by subscribing to our newsletter. Head to <u>dhs.wisconsin.gov/epht</u> and click the link to subscribe.

OUR STAFF

Jenny Camponeschi, MS | Program Manager 608-267-3811 | jennifer.camponeschi@wi.gov

Megan Christenson, MS, MPH | Epidemiologist 608-266-7897 | megan.christenson@wi.gov

Paul Creswell, PhD | Senior Epidemiologist608-267-9752 | paul.creswell@wi.gov

Jon Meiman, MD | Chief Medical Officer 608-266-1253 | jonathan.meiman@wi.gov

SPECIAL THANKS

Iowa Environmental Public Health Tracking Program

Wisconsin Environmental Public Health Tracking Program's Technical Advisory Group

Kevin Masarik, Center for Watershed Science and Education, University of Wisconsin-Extension

Meridith Mueller, MPH | Evaluation Specialist 608-267-3830 | meridith.mueller@wi.gov

Joseph Olson | IS Comprehensive Specialist 608-266-6696 | josepha.olson@wi.gov

Christy Vogt, MPH, CHES | Health Educator 608-267-2488 | christy.vogt@wi.gov

Mark Werner, PhD | Chief, Environmental Epidemiology and Surveillance Section, Principal Investigator 608-266-7480 | mark.werner@wi.gov

> ACCESS DATA AND RESOURCES dhs.wisconsin.gov/epht

WISCONSIN ENVIRONMENTAL PUBLIC HEALTH TRACKING PROGRAM

Bureau of Environmental and Occupational Health State of Wisconsin | Department of Health Services | Division of Public Health dhstracking@wi.gov | dhs.wisconsin.gov/epht MAY 2017 | P-00719 (Rev. 05/2017)