## **State of Wisconsin**

## 2014

# **Point Beach - Kewaunee**

# **Environmental Radioactivity Survey**



Wisconsin Department of Health Services
Division of Public Health
Bureau of Environmental and Occupational Health
Radiation Protection Section
P.O. Box 2659
Madison, Wisconsin 53701
P-00442 (07/2016)

## State of Wisconsin, Department of Health Services

## 2014

## Point Beach – Kewaunee Environmental Monitoring Survey

## **Executive Summary**

Wisconsin Stat. § 254.41 mandates the State of Wisconsin, Department of Health Services to conduct environmental radiation monitoring around the nuclear power facilities that affect Wisconsin. This environmental monitoring report is for the Point Beach and Kewaunee nuclear generating plants for the calendar year January - December 2014 and provides a description and results of this environmental monitoring program.

The Wisconsin Department of Health Services' environmental monitoring program consists of the collection of various types of samples from the air, water and terrestrial exposure pathways, sample analysis and interpretation of the data. The sampling program included samples of air, precipitation, ambient gamma radiation, surface water, fish, shoreline sediment, soil, milk, well water, and vegetation that are collected from selected locations at planned sampling intervals.

## **Program Summary**

For 2014, all sample results from the Point Beach – Kewaunee environmental monitoring area were less than state and federal standards or guidelines.

The Wisconsin Department of Health Services' environmental monitoring programs provide an ongoing baseline of radioactivity measurements to assess any Wisconsin health concerns from the operation of nuclear power generating facilities in or near Wisconsin or other radiological incidents that may occur within Wisconsin or worldwide. These monitoring programs show the following:

- Environmental radioactivity levels have been trending downward in the time period since the 1950's-1960's atmospheric nuclear testing and such radiological incidents as the Chernobyl nuclear reactor incident.
- There were no incidents during 2014, such as the 2011 Japan Fukushima Daiichi incident, that required additional environmental monitoring.
- There is no radioactive problem with sampled types of food consumed in Wisconsin and no health problem related to radioactivity for Wisconsin citizens.

The Department's ongoing environmental monitoring programs will continue to provide assurances to the citizens of Wisconsin that the environment surrounding the Point Beach – Kewaunee nuclear power facilities and other monitoring areas will continue to be evaluated.

# **Table of Contents**

|                                                                                                      | Page Number |
|------------------------------------------------------------------------------------------------------|-------------|
| Introduction                                                                                         | 1           |
| WI DHS Point Beach - Kewaunee Environmental Monitoring Sampling Program                              | 1           |
| Program Modifications                                                                                | 1           |
| Laboratory Services and Quality Assurance                                                            | 1           |
| Detection Limits                                                                                     | 1           |
| Reporting of Sample Analysis Results                                                                 | 2           |
| Results and Discussion for the Wisconsin DHS Point Beach – Kewaunee Environmental Monitoring program | 9           |
| References                                                                                           | 11          |
| Sample Activity Summary                                                                              | 13          |

# **List of Tables**

| Table De | escription                                                                                                                                                                         | Page Number |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Table 1  | Sample collection summary and required analyses for 2014.                                                                                                                          | 3           |
| Table 2  | Wisconsin DHS Point Beach - Kewaunee environmental monitoring sampling sites.                                                                                                      | g<br>3      |
| Table 3  | Missing sample or sample deviation report for 2013.                                                                                                                                | 5           |
| Table 4  | Sample activity summary for the Wisconsin DHS Point Beach - Kewaunee environmental monitoring                                                                                      | 13          |
| Table 5  | Wisconsin DHS air particulate gross beta and air iodine (I-131) analysis results from the Point Beach – Kewaunee                                                                   | 16          |
| Table 6  | Wisconsin DHS gamma isotopic analysis results from the quarterly composites of air particulate filters collected from the Point Beach – Kewaunee environmental monitoring program. | 22          |
| Table 7  | Wisconsin DHS TLD network for the Point Beach – Kewaunee environmenta monitoring program.                                                                                          | al<br>24    |
| Table 8  | Wisconsin DHS analysis results for precipitation samples collected for the Point Beach – Kewaunee environmental monitoring program.                                                | 25          |
| Table 9  | Wisconsin DHS analysis results for fish samples collected for the Point Beach – Kewaunee environmental monitoring program.                                                         | 26          |
| Table 10 | Wisconsin DHS analysis results for shoreline sediment samples collected for the Point Beach – Kewaunee environmental monitoring program.                                           | 27          |
| Table 11 | Wisconsin DHS analysis results for surface water samples collected for the Point Beach – Kewaunee environmental monitoring program.                                                | 28          |
| Table 12 | Wisconsin DHS analysis results for well water samples collected for the Point Beach – Kewaunee environmental monitoring program.                                                   | 31          |
| Table 13 | Wisconsin DHS analysis results for milk samples collected for the Point Beach – Kewaunee environmental monitoring program.                                                         | 32          |
| Table 14 | Wisconsin DHS analysis results for vegetation samples collected for the Point Beach – Kewaunee environmental monitoring program.                                                   | 35          |
| Table 15 | Wisconsin DHS analysis results for soil samples collected for the Point Beach – Kewaunee environmental monitoring program.                                                         | 37          |
|          | List of Figures                                                                                                                                                                    |             |
|          | _                                                                                                                                                                                  | <b>.</b>    |
| _        | •                                                                                                                                                                                  | Page Number |
| J        | Point Beach - Kewaunee environmental monitoring sampling sites in relation to the Kewaunee plant.                                                                                  | 7           |
| Figure 2 | Point Beach - Kewaunee environmental monitoring sampling sites in relation to the Point Beach plant.                                                                               | n<br>8      |

## **State of Wisconsin Department of Health Services**

#### 2014

## Point Beach - Kewaunee Environmental Radioactivity Survey

#### Introduction

Wisconsin Stat. § 254.41 mandates the Wisconsin (WI) Department of Health Services (DHS) to conduct environmental radiation monitoring around the nuclear power facilities that impact Wisconsin. This environmental monitoring report is for the Point Beach and Kewaunee nuclear generating plants for the calendar year January - December 2014 and provides a description and results of this environmental monitoring program.

## WI DHS Point Beach - Kewaunee Environmental Monitoring Sampling Program

The Wisconsin DHS environmental monitoring program consists of the collection of various types of samples from the air, water and terrestrial exposure pathways. The sampling program included samples of air, precipitation, ambient gamma radiation as measured by thermoluminescent dosimeters (TLD), surface water, fish, shoreline sediment, soil, milk, well water, and vegetation that are collected from selected locations at planned sampling intervals.

Table 1 provides a listing of types of samples collected, collection frequency, sites where samples are collected, number of samples collected, number of samples that were missed or had sample or analysis deviations and a listing of the required analyses. Table 2 is a listing of sampling sites and includes a description, direction and distance from the monitored power plants. Table 3 provides an explanation of missing samples or non-routine sample analyses. Figure 1 is a map showing the location of environmental sampling sites in relation to the Kewaunee plant and Figure 2 is a map showing the location of environmental sampling sites in relation to the Point Beach plant.

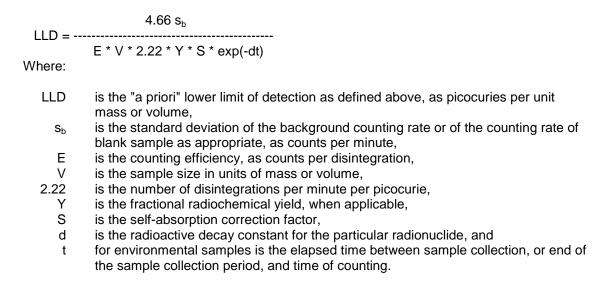
## **Program Modifications**

The following program modifications were implemented for 2014.

There were no modifications for the collection period (January1 through December 31) 2014.

## **Laboratory Services and Quality Assurance**

Analysis of the samples is performed under contract with the Wisconsin State Laboratory of Hygiene (WSLH). WSLH maintains a quality assurance program. Analytical procedures provide for routine replicate analyses to verify methods and instrument operation. Traceable sources are used daily to regularly calibrate instrumentation and conduct performance checks. Instrumentation quality control charts are maintained and available upon written request.


WSLH participates in the Environmental Resource Associates' Proficiency Testing program and has performed satisfactorily over the report period. In addition, WSLH participates in the Multi Analytical Performance Evaluation Program (MAPER) for environmental matrix analysis. Proficiency testing results are available from the Wisconsin State Laboratory of Hygiene.

## **Detection Limits**

Detection limits, required by Wisconsin DHS, will be expressed as a lower limit of detection (LLD). The required DHS LLD as indicated in Table 4 under the heading "LLD" is an "a priori" estimate of the

capability for detecting an activity concentration by a given measurement system, procedure, and type of sample. Counting statistics of the appropriate instrument background are used to compute the LLD for each specific analysis. Using 4.66 times the standard deviation (s<sub>b</sub>) of the instrument background, the LLD for each specific analysis is defined at the 95% Confidence Level.

The LLD for each radioisotope listed in Table 4 has been calculated from the following equation:



Typical values for E, V, Y and dt have been used to calculate the LLD.

## **Reporting of Sample Analysis Results**

Results for specific analyses will be reported as either a "less than" (<) value or an actual activity value. The reporting of results in Table 4 under the heading "Range" and in Tables 5-15 is an "a posteriori" calculations based on the actual analysis performed using the actual sample values for E, V, Y and dt. Typically the reported "less than" (<) results are lower than the required Wisconsin DHS LLD indicating that the required DHS LLD has been met.

An actual activity value will be accompanied by an uncertainty term for that analysis. The uncertainty term is a plus or minus counting uncertainty term at the 2 sigma (95%) confidence interval and is printed as  $(+- \text{ or } \pm)$ . Examples and explanations of data reporting are:

| <u>Example</u> | <u>Nuclide</u>                         | Activity reported                         |
|----------------|----------------------------------------|-------------------------------------------|
| 1 2            | <sup>137</sup> Cs<br><sup>137</sup> Cs | < 10 pCi/liter<br>15 <u>+</u> 3 pCi/liter |

In example 1 we can be 95% confident that the sample activity, if any, is less than the LLD of 10 pCi/liter. In example 2 we can be 95% confident that the actual sample activity is greater than the LLD for that analysis and is between 12 and 18 pCi/liter.

Table 1 Sample collection summary and required analyses for 2014.

| Sample Type        | Collection<br>and<br>Frequency | Site Locations                | Number of<br>Samples<br>Collected | Number of<br>Sample<br>Deviations | Required<br>Analyses |
|--------------------|--------------------------------|-------------------------------|-----------------------------------|-----------------------------------|----------------------|
| air particulate    | C/W                            | 1, 4, 7, 8, 17, 18            | 312                               | 2                                 | GA, GB, GI           |
| air iodine         | C/W                            | 4, 17, 18                     | 156                               | 1                                 | GI                   |
| precipitation      | C/BW                           | 1, 4                          | 12                                | 0                                 | GB, H                |
| TLD                | G/Q                            | T1 – T31                      | 122                               | 2                                 | ambient gamma        |
| surface water      | G/M                            | 9, 12a, 17                    | 36                                | 8                                 | GA, GB, GI, Sr, H, I |
| surface water      | G/SA                           | 5, 29                         | 4                                 | 2                                 | GA, GB, GI, Sr, H    |
| fish               | G/Q                            | 10a                           | 10                                | 0                                 | GI                   |
| shoreline sediment | G/A                            | 5, 10a, 12a, 12b, 12c, 26, 29 | 7                                 | 0                                 | GA, GB, GI           |
| vegetation         | G/SA                           | 1, 2, 3, 4, 5, 7, 8, 14, 17   | 18                                | 0                                 | GA, GB, GI           |
| soil               | G/SA                           | 1, 2, 3, 4, 5, 7, 8, 14, 17   | 18                                | 0                                 | GA, GB, GI           |
| well water         | G/SA                           | 3, 10b, 11, 12d (2 sites)     | 9                                 | 1                                 | GA, GB, H            |
| milk               | G/M                            | 24, 27, 28                    | 36                                | 0                                 | GI, I, Sr            |

Collection type: C/ = continuous; G/ = grab

Frequency: /W = weekly; /M = monthly; /Q = quarterly; /A = annually; /BW = bi-weekly; /SA = semi-annually Required analyses: GA = gross alpha; GB = gross beta; GI = gamma isotopic; Sr = strontium; I = iodine;

H = tritium

Table 2 Wisconsin DHS Point Beach - Kewaunee environmental monitoring sampling sites.

| Sample site | Distance and direction (miles) |             | Location description                            |
|-------------|--------------------------------|-------------|-------------------------------------------------|
|             | Kewaunee                       | Point Beach |                                                 |
| PBK-1       | 5.7 WSW                        | 5.7 WNW     | Francar residence                               |
| PBK-2       | 4.9 S                          | 0.7 SSW     | Southwest corner property line - Point Beach    |
| PBK-3       | 4.3 SSW                        | 1.5 W       | Two Creeks Town Hall                            |
| PBK-4       | 3.1 S                          | 1.2 NNW     | Residence north property line - Point Beach     |
| PBK-5       | 2.6 S                          | 1.7 NNW     | Two Creeks Park; NW corner of property          |
| PBK-6       | 9.2 S                          | 5.1 SSE     | Coast Guard station (discontinued August, 2002) |
| PBK-7       | 7.3 SSW                        | 3.3 SSW     | WPSC substation, Cty V                          |
| PBK-8       | 0.8 WNW                        | 4.9 N       | P Ihlenfeldt farm                               |
| PBK-9       | 4.7 S                          | 0.5 SSE     | Point Beach, meteorological tower               |
| PBK-10a     | 4.2 S                          | 0.1 E       | Point Beach, effluent channel                   |
| PBK-10b     | 4.2 S                          | 0.1 E       | Point Beach, entrance                           |
| PBK-11      | 3.1 SSW                        | 2.0 NW      | Two Creeks International Harvester              |
| PBK-12a     | 0.1 E                          | 4.2 N       | Kewaunee, effluent channel                      |
| PBK-12b     | 0.1 E                          | 4.2 N       | Kewaunee, effluent channel, 500 feet N          |
| PBK-12c     | 0.1 E                          | 4.2 N       | Kewaunee, effluent channel, 500 feet S          |
| PBK-12d     | 0.1 W                          | 4.2 N       | Kewaunee, well sites                            |
| PBK-14      | 0.8 W                          | 4.3 N       | Nuclear Road – field east of parking lot        |

Table 2. Wisconsin DHS Point Beach - Kewaunee environmental monitoring sampling sites, continued.

| Sample site | Distance and direction<br>(miles)<br>Kewaunee Point Beach |          | Location description                                       |  |  |
|-------------|-----------------------------------------------------------|----------|------------------------------------------------------------|--|--|
| PBK-15      | 1.7 SW                                                    | 3.5 NNW  | Jct of Cty BB and Woodside Road (discontinued July, 1996)  |  |  |
| PBK-16      | 3.9 W                                                     | 6.0 NW   | Bruechert residence (discontinued July, 1996)              |  |  |
| PBK-17      | 11.4 NNE                                                  | 15.6 N   | Green Bay Pumping Station - Rostok                         |  |  |
| PBK-18      | 0.1 S                                                     | 4.1 N    | Kewaunee, meteorological tower                             |  |  |
| PBK-19      | 6.2 SW                                                    | 3.8 W    | W. Funk farm (discontinued in January 2009)                |  |  |
| PBK-20      | 3.2 SSW                                                   | 2.2 NW   | L. Engelbrecht farm (discontinued in September, 2003)      |  |  |
| PBK-21      | 3.0 N                                                     | 7.3 N    | D. Stangel farm (left the dairy business in October, 1999) |  |  |
| PBK-22      | 10.4 SSW                                                  | 6.7 SW   | Bertler's food stand (discontinued in July, 1998)          |  |  |
| PBK-23      | 4.0 WNW                                                   | 6.4 NW   | Jansky farm (discontinued in July, 1998)                   |  |  |
| PBK-24      | 2.6 N                                                     | 6.9 N    | L. Struck farm                                             |  |  |
| PBK-25      | 7.4 S                                                     | 3.2 SSE  | Manitowoc Public School District (discontinued in 2013)    |  |  |
| PBK-26      | 8.3 NNE                                                   | 12.6 N   | Kewaunee                                                   |  |  |
|             |                                                           |          | R. Barta farm                                              |  |  |
| PBK-27      | 3.5 SSW                                                   | 1.7 NW   |                                                            |  |  |
| PBK-28      | 6.0 S                                                     | 1.8 SSE  | Strutz Farms Inc                                           |  |  |
| PBK-29      | 6.1 SSE                                                   | 2.1 SSE  | Irish Road – at Lake Michigan                              |  |  |
| PBK-(T1-T8) | 4.0 S                                                     | 0.6 NW   | Point Beach ISFSI on outside of perimeter fence            |  |  |
| PBK-T9      | 3.2 S                                                     | 1.2 NNW  | Point Beach north property line, Lakeshore Road            |  |  |
| PBK-T10     | 5.1 S                                                     | 0.8 SSE  | Nuclear Road, 0.6 mile E of Lakeshore Road                 |  |  |
| PBK-T11     | 5.1 S                                                     | 0.9 SSW  | Nuclear Road, 0.1 mile E of Lakeshore Road                 |  |  |
| PBK-T12     | 5.0 SSW                                                   | 1.4 WSW  | Highway 42, 0.6 mile N of Nuclear Road                     |  |  |
| PBK-T13     | 4.0 SSW                                                   | 1.4 WNW  | Highway 42, 0.3 mile N of Tapawingo Road                   |  |  |
| PBK-T14     | 3.1 SSW                                                   | 1.9 NW   | Two Creeks Road, 0.1 mile E of Highway 42                  |  |  |
| PBK-T15     | 7.6 S                                                     | 3.3 S    | Junction of Lakeshore Road and Ravine Drive                |  |  |
| PBK-T16     | 7.3 SSW                                                   | 3.3 SW   | Cty V, 0.5 mile W of Hwy 42                                |  |  |
| PBK-T17     | 5.6 SW                                                    | 3.8 W    | Junction of Saxonbury Road and Tapawingo Road              |  |  |
| PBK-T18     | 3.2 SW                                                    | 3.3 NW   | Zander Road, 0.1 mile W on Tannery Road                    |  |  |
| PBK-T19     | 0.7 N                                                     | 5.0 N    | Junction of Sandy Bay Road and Lakeview Road               |  |  |
| PBK-T20     | 1.4 SW                                                    | 3.4 NNW  | Junction of Cty BB and Ratajcsak Lane                      |  |  |
| PBK-T21     | 1.3 W                                                     | 4.5 NNW  | Junction of Nuclear Road and Woodside Road                 |  |  |
| PBK-T22     | 1.2 NW                                                    | 5.3 N    | Sandy Bay Road, 0.4 mile W of Hwy 42                       |  |  |
| PBK-T23     | 4.9 WSW                                                   | 5.5 NW   | Cty B, S of Tisch Mills                                    |  |  |
| PBK-T24     | 3.8 NW                                                    | 7.0 NNW  | Jct of Norman Road and Cty G                               |  |  |
| PBK-T25     | 3.1 NNW                                                   | 7.2 N    | Woodside Road, 0.2 miles S of Old Settlers Road            |  |  |
| PBK-T26     | 3.0 N                                                     | 7.3 N    | Old Settlers Road, 0.1 mile W of Cemetery Road             |  |  |
| PBK-T27     | 17.4 NNE                                                  | 21.6 NNE | Algoma, S on Hwy 42                                        |  |  |
| PBK-T28     | 7.2 NNE                                                   | 11.4 N   | Kewaunee, S on Hwy 42                                      |  |  |
| PBK-T29     | 12.4 S                                                    | 8.1 SSW  | Two Rivers, junction of Hwy 42 and 34th Avenue             |  |  |
| PBK-T30     | 16.0 SSW                                                  | 11.9 SSW | Manitowoc, Hwy 42, Two Rivers Chamber of Commerce          |  |  |
| PBK-T31     | 8.6 SW                                                    | 5.6 WSW  | Mishicot, Cty V, in front of house #653                    |  |  |

Table 3 Missing sample or sample deviation report for 2013.

| Sample type     | Date                    | Site   | Explanation                                                           |
|-----------------|-------------------------|--------|-----------------------------------------------------------------------|
| Air particulate | 09/12/14                | 17     | Error by field technician recording data                              |
| Air particulate | 09/19/14                | 17     | Error by field technician recording data                              |
| Air iodine      | 10/16/14                | 17     | laboratory error during analysis                                      |
| TLD             | 2 <sup>nd</sup> quarter | TLD-13 | No data, the TLD was lost in the field.                               |
| TLD             | 1 <sup>st</sup> quarter | TLD-28 | No data, the TLD was lost in the field.                               |
| Surface Water   | 01/05/14                | 9      | Sample not collected due to safety concerns                           |
| Surface Water   | 2/13/14                 | 9      | Laboratory delay in analysis of I-131, results not reported           |
| Surface Water   | 4/16/14                 | 9      | Laboratory delay in analysis of I-131, results not reported           |
| Surface Water   | 6/12/14                 | 9      | Laboratory delay in analysis of I-131, results not reported           |
| Surface Water   | 7/10/14                 | 9      | Laboratory delay in analysis of I-131, results not reported           |
| Surface Water   | 09/17/14                | 9      | Laboratory delay in analysis of I-131, results not reported           |
| Surface Water   | 10/26/14                | 9      | There was a laboratory quality issue with Sr-89, results not reported |
| Surface Water   | 10/26/14                | 9      | There was a laboratory quality issue with Sr-90, results not reported |
| Surface Water   | 11/12/14                | 9      | Did not meet detection limit, I-131                                   |
| Surface Water   | 04/01/14                | 12a    | Laboratory delay in analysis of I-131, results not reported           |
| Surface Water   | 06/02/14                | 12a    | Laboratory delay in analysis of I-131, results not reported           |
| Surface Water   | 10/01/14                | 12a    | Laboratory quality issue with the sample Sr-89                        |
| Surface Water   | 10/01/14                | 12a    | Laboratory quality issue with the sample Sr-90                        |
| Surface Water   | 12/01/14                | 12a    | There was a laboratory quality issue I-131, high background           |
| Surface Water   | 02/03/14                | 17     | Did not meet detection limit, I-131                                   |
| Surface Water   | 05/05/14                | 17     | Laboratory delay in analysis of I-131, results not reported           |
| Surface Water   | 10/07/14                | 17     | Laboratory quality issue with the sample Sr-89                        |
| Surface Water   | 10/07/14                | 17     | Laboratory quality issue with the sample Sr-90                        |
| Surface Water   | 11/03/14                | 17     | Did not meet detection limit, I-131                                   |
| Surface Water   | 10/29/14                | 5      | There was a laboratory quality issue with Sr-89, results not reported |
| Surface Water   | 10/29/14                | 5      | There was a laboratory quality issue with Sr-90, results not reported |
| Surface Water   | 10/29/14                | 29     | There was a laboratory quality issue with Sr-89, results not reported |
| Surface Water   | 10/29/14                | 29     | There was a laboratory quality issue with Sr-90, results not reported |
| Milk            | 02/12/14                | 28     | Laboratory delay in analysis of I-131                                 |
| Milk            | 04/09/14                | 28     | Laboratory delay in analysis of I-131, results not reported           |
| Milk            | 06/11/14                | 28     | Laboratory delay in analysis of I-131, results not reported           |
| Milk            | 07/09/14                | 28     | There was a laboratory quality issue                                  |

Table 3 Missing sample or sample deviation report for 2013, continued.

| Sample type | Date     | Site | Explanation                                                       |
|-------------|----------|------|-------------------------------------------------------------------|
| Milk        | 09/10/14 | 28   | There was a laboratory quality issue                              |
| Milk        | 11/12/14 | 28   | Laboratory delay in analysis of Sr-90, results not reported       |
| Milk        | 12/10/14 | 28   | Laboratory delay in analysis of Sr-90, results not reported       |
| Milk        | 02/12/14 | 24   | Laboratory delay in analysis of I-131                             |
| Milk        | 04/09/14 | 24   | Laboratory delay in analysis of I-131, results not reported       |
| Milk        | 06/11/14 | 24   | Laboratory delay in analysis of I-131, results not reported       |
| Milk        | 07/09/14 | 24   | There was a laboratory quality issue                              |
| Milk        | 10/08/14 | 24   | Matrix quality control issue, sample did not meet quality control |
| Milk        | 11/12/14 | 24   | Laboratory delay in analysis of Sr-90, results not reported       |
| Milk        | 11/12/14 | 24   | Did not meet detection limit, I-131                               |
| Milk        | 12/10/14 | 24   | Laboratory delay in analysis of Sr-90, results not reported       |
| Milk        | 02/12/14 | 24   | Laboratory delay in analysis of I-131, detection limit not met    |
| Milk        | 04/09/14 | 27   | Laboratory delay in analysis of I-131, results not reported       |
| Milk        | 06/11/14 | 27   | Laboratory delay in analysis of I-131, results not reported       |
| Milk        | 07/09/14 | 27   | Unacceptable high background Sr-90                                |
| Milk        | 08/13/14 | 27   | Unacceptable high background Sr-90                                |
| Milk        | 10/08/14 | 27   | Quality issue with the sample Sr-90                               |
| Milk        | 11/12/14 | 27   | Detection limit was not met I-131                                 |
| Milk        | 11/12/14 | 27   | Laboratory delay in analysis of Sr-90, results not reported       |
| Milk        | 12/10/14 | 27   | Laboratory delay in analysis of Sr-90, results not reported       |
| Vegetation  | 06/17/14 | 1    | Did not meet detection limit, I-131                               |
| Vegetation  | 06/17/14 | 5    | Did not meet detection limit, I-131                               |

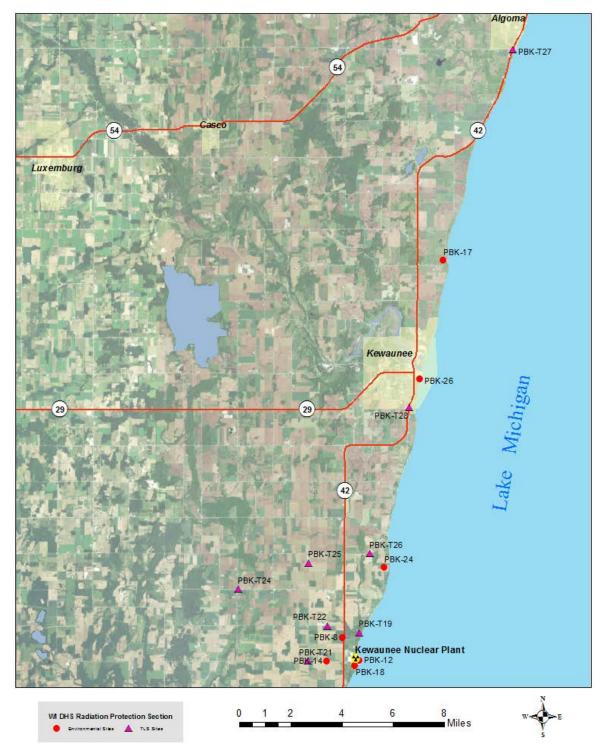



Figure 1 Point Beach - Kewaunee environmental monitoring sampling sites in relation to the Kewaunee plant.




Figure 2 Point Beach - Kewaunee environmental monitoring sampling sites in relation to the Point Beach plant.

# Results and Discussion for the Wisconsin DHS Point Beach – Kewaunee Environmental Monitoring program

#### Air Particulate

A summary of reported activities by Wisconsin DHS for air particulate samples is included in Table 4. Results from the individual sample analyses are listed in Tables 5-6.

From the gross beta activities listed in Table 5, it may be noted that there are no significant differences due to distance from either the Kewaunee or the Point Beach facility. With no significant differences due to distance, an increase in gross beta activity attributable to the Kewaunee or the Point Beach facilities is not evident.

The gamma isotopic analysis of the quarterly air particulate filter composites detected only small amounts of the radioisotopes listed in Table 4. All other radioisotopes were below their respective LLD. Beryllium-7 (<sup>7</sup>Be), detected in all composites, is a naturally occurring radioisotope that is constantly produced through nuclear reactions between cosmic rays and nuclei in the atmosphere and is detected in air composites from other areas of the state.

#### Air Iodine

A summary of reported activities by Wisconsin DHS for air iodine samples is included in Table 4. Results from the individual sample analyses are listed in Table 5.

Air iodine measurements were all below the LLD of 0.07 pCi/m<sup>3</sup>. Influence by the Kewaunee or the Point Beach nuclear generating facilities on air quality is not evident from air iodine analysis.

### Ambient Gamma Radiation – Thermoluminescent dosimeters (TLD)

A summary of reported activities by Wisconsin DHS for ambient gamma radiation is included in Table 4. Results from the individual sample analyses are listed in Table 7.

Significant differences in exposure were not noticed at different distances from either the Kewaunee or the Point Beach nuclear facilities for sites PBK-T9 through PBK-T31. Excluding the sites around the perimeter of the Point Beach ISFSI (T1 - T8), the average quarterly exposure from the remaining 23 sites was  $13.7 \pm 1.9$  milliroentgens. The average quarterly exposure for 2013 is at background levels and is comparable to other areas in Wisconsin. Influence by the Kewaunee or the Point Beach nuclear generating facilities on air quality is not evident from ambient gamma radiation analysis.

## **Precipitation**

A summary of reported activities by Wisconsin DHS for precipitation samples is included in Table 4. Results from the individual sample analyses are listed in Table 8.

The gross beta activity in precipitation was all within the normal range of activity when compared to previous year's data. Influence by the Kewaunee or the Point Beach nuclear generating facilities on air quality is not evident from precipitation sample analysis.

#### **Fish**

A summary of reported activities by Wisconsin DHS for fish samples is included in Table 4. Results from the individual sample analyses are listed in Table 9.

The fish samples showed no unusual activities. The reported activities for cesium-137 (<sup>137</sup>Cs) were also detected in previous years and are probably attributable to residual fallout from previous atmospheric nuclear weapons testing. Influence by the Kewaunee or the Point Beach nuclear generating facilities is not evident from fish sample analysis.

#### **Shoreline Sediment**

A summary of reported activities by Wisconsin DHS for shoreline sediment samples is included in Table 4. Results from the individual sample analyses are listed in Table 10.

Analysis of the shoreline samples showed no unusual activities. Naturally occurring potassium-40 (<sup>40</sup>K) was detected in all samples. The reported activities for cesium-137 (<sup>137</sup>Cs) were also detected in previous years and are probably attributable to residual fallout from previous atmospheric nuclear weapons testing. Naturally occurring radioisotopes from the uranium-238 (<sup>238</sup>U) and thorium-232 (<sup>232</sup>Th) decay series are commonly detected but have not been quantified or reported. Influence by the Kewaunee or the Point Beach nuclear generating facilities is not evident from shoreline sediment sample analysis.

#### **Surface Water**

A summary of reported activities by Wisconsin DHS for surface water samples is included in Table 4. Results from the individual sample analyses are listed in Table 11.

From the gamma isotopic analysis all radioisotopes were below their respective LLD except for one sample where iodine-131 (<sup>131</sup>I) was slightly elevated. There were 5 surface water samples with levels of detection above the 0.5 pCi/L resulting from laboratory errors in analysis. In addition, there were 8 samples that were not analyzed for iodine-131 (<sup>131</sup>I) and 6 samples were not analyzed for Strontium-90 (<sup>90</sup>Sr) due to laboratory delays. All reported activities for gross beta; gross alpha and tritium (<sup>3</sup>H) are at background levels and are comparable to data from previous years. The surface water samples uniformly show activities well below state or federal standards. Influence by the Kewaunee or the Point Beach nuclear generating facilities is not evident from surface water sample analysis.

## **Well Water**

A summary of reported activities by Wisconsin DHS for well water samples is included in Table 4. Results from the individual sample analyses are listed in Table 12.

The well water samples showed no unusual gross alpha and gross beta activities and all activities for tritium (<sup>3</sup>H) were less than its LLD. The measured activities are all below state and federal standards. Influence by the Kewaunee or the Point Beach nuclear generating facilities is not evident from well water sample analysis.

#### Milk

A summary of reported activities by Wisconsin DHS for milk samples is included in Table 4. Results from the individual sample analyses are listed in Table 13.

The analysis of milk samples detected no unusual activities. However, there were 6 milk samples with levels of detection above 0.5 pCi/L due to laboratory errors. In addition, there were 6 samples that were not analyzed for iodine-131 (<sup>131</sup>I) and 8 samples that were not analyzed for strontium-90 (<sup>90</sup>Sr) due to laboratory delays. Naturally occurring potassium-40 (<sup>40</sup>K) was detected in all samples. The detected activities for strontium-90 (<sup>90</sup>Sr), attributable to residual fallout from previous atmospheric nuclear weapons testing, were also detected in previous years at similar activity levels. Influence by the Kewaunee or the Point Beach nuclear generating facilities is not evident from milk sample analysis.

## Vegetation

A summary of reported activities by Wisconsin DHS for vegetation samples is included in Table 4. Results from the individual sample analyses are listed in Table 14.

Analysis of the vegetation samples showed no unusual activities. The gamma isotopic analysis detected only small amounts of naturally occurring potassium-40 (<sup>40</sup>K) and beryllium-7 (<sup>7</sup>Be) listed in Table 4. Influence by the Kewaunee or the Point Beach nuclear generating facilities is not evident from vegetation sample analysis.

#### Soil

A summary of reported activities by Wisconsin DHS for soil samples is included in Table 4. Results from the individual sample analyses are listed in Table 15.

Analysis of the soil samples showed no unusual activities. Naturally occurring potassium-40 (<sup>40</sup>K) was detected in all samples. The reported activities for cesium-137 (<sup>137</sup>Cs) were also detected in previous years and are probably attributable to residual fallout from previous atmospheric nuclear weapons testing. Naturally occurring radioisotopes from the uranium-238 (<sup>238</sup>U) and thorium-232 (<sup>232</sup>Th) decay series are commonly detected but have not been quantified or reported.

#### **Point Beach ISFSI**

A summary of reported activities by Wisconsin DHS for ambient gamma radiation monitored in the vicinity of the Point Beach Independent Spent Fuel Storage Installation (ISFSI) is included in Table 7.

Ambient gamma exposure levels greater than background, as measured by thermoluminescent dosimeters (TLDs), are apparent at all sites (T1 – T8) that are on the Point Beach ISFSI perimeter fence closest to the ventilated storage casks. An increase in ambient gamma exposure levels at sites T9 - T14 (0.8 - 1.9 miles from the Point Beach ISFSI) or at sites T15 – T31 (greater than 2 miles from the Point Beach ISFSI) was not evident and the ambient gamma exposure levels are consistent with previous years data. The average standard quarterly ambient gamma exposure for 2014 for sites T9 – T31 was  $13.7 \pm 1.9$  milliroentgens and for sites T1 – T8 varied from 18.6 - 52.9 milliroentgens per standard quarter depending on the distance from the storage casks.

### Dose to an Average Individual

Federal regulations 10 CFR 20, 10 CFR 50 Appendix I and 40 CFR 190 restrict the annual exposure of the population from all parts of the nuclear fuel cycle, including nuclear power plants. Doses resulting from gaseous and liquid effluent releases from the Point Beach or the Kewaunee nuclear generating facilities are less than the limits as stated in these Federal regulations.

The Wisconsin DHS limit for permissible levels of radiation exposure from external sources in unrestricted areas is defined in the Wis. Adm. Code section DHS 157.23. Doses resulting from gaseous and liquid effluent releases from the Point Beach or Kewaunee nuclear generating facilities are less than the limits as stated in Wis. Adm. Code section DHS 157.23.

## References

State of Wisconsin, Wisconsin Administrative Code, ch. DHS 157.23

State of Wisconsin, "FINAL ENVIRONMENTAL IMPACT STATEMENT, Point Beach Nuclear Power Plant Plant Projects Proposed by Wisconsin Electric Power Company, Temporary Storage of Spent Nuclear Fuel in Dry Casks, PSC Docket 6630-CE-197, Unit 2 Steam Generator Replacement, PSC Docket 6630-CE-209, AUGUST 1994."

- U.S. Environmental Protection Agency, Environmental Radiation Requirements for Normal Operations of Activities in the Uranium Fuel Cycle, EPA 520/4-76-016, 40 CFR Part 190, November 1976.
- U.S. Nuclear Regulatory Commission, Title 10, Part 20.
- U.S. Nuclear Regulatory Commission, Title 10, Part 50, Appendix I.

# **Sample Activity Summary**

Table 4 Sample activity summary for the Wisconsin DHS Point Beach - Kewaunee environmental monitoring

| Sample type (units)    | LLD   | Number of samples <sup>a</sup> | Analysis            | Range         |
|------------------------|-------|--------------------------------|---------------------|---------------|
| Air particulate        | 0.005 | 311 / 311                      | gross beta          | 0.006 - 0.043 |
| (pCi/m <sup>3</sup> )  |       |                                | gamma isotopic      |               |
|                        | 0.020 | 24 / 23                        | Be-7                | 0.007 - 0.099 |
|                        | 0.002 | 24 / 0                         | Mn-54               | < 0.0005      |
|                        | 0.002 | 24 / 0                         | Co-58               | < 0.0005      |
|                        | 0.005 | 24 / 0                         | Fe-59               | < 0.0012      |
|                        | 0.002 | 24 / 0                         | Co-60               | < 0.0007      |
|                        | 0.005 | 24 / 0                         | Zn-65               | < 0.0012      |
|                        | 0.002 | 24 / 0                         | Nb-95               | < 0.0006      |
|                        | 0.005 | 24 / 0                         | Zr-95               | < 0.0009      |
|                        | 0.002 | 24 / 0                         | Ru-103              | < 0.0006      |
|                        | 0.015 | 24 / 0                         | Ru-106              | < 0.0044      |
|                        | 0.020 | 24 / 0                         | I-131               | < 0.0020      |
|                        | 0.002 | 24 / 0                         | Cs-134              | < 0.0006      |
|                        | 0.002 | 24 / 0                         | Cs-137              | < 0.0006      |
|                        | 0.030 | 24 / 0                         | Ba-140              | < 0.0037      |
|                        | 0.020 | 24 / 0                         | La-140              | < 0.0015      |
|                        | 0.002 | 24 / 0                         | Ce-141              | < 0.0010      |
|                        | 0.005 | 24 / 0                         | Ce-144              | < 0.0032      |
| Air iodine<br>(¤Ci/m³) | 0.07  | 155 / 0                        | I-131               | < 0.054       |
| Surface water          | 3.0   | 39 / 0                         | gross alpha (sol)   | < 1.6 – 2.5   |
| (pCi/liter)            | 3.0   | 39 / 2                         | gross beta (sol)    | < 2.0 - 5.0   |
|                        | 3.0   | 39 /0                          | gross alpha (insol) | < 1.3 – 0.6   |
|                        | 3.0   | 39 / 1                         | gross beta (insol)  | < 8.4         |
|                        | 300   | 16 / 0                         | H-3                 | < 220         |
|                        | 1.5   | 6 / 4                          | I-131               | < 2.4         |
|                        | 2.0   | 11 / 2                         | Sr-89               | < 3.2         |
|                        | 1.0   | 11 / 0                         | Sr-90               | < 0.3 – 0.4   |
|                        |       |                                | gamma isotopic      |               |
|                        | 15    | 38 / 0                         | Mn-54               | < 10          |
|                        | 15    | 38 / 0                         | Co-58               | < 12          |
|                        | 30    | 38 / 0                         | Fe-59               | < 23          |
|                        | 15    | 38 / 0                         | Co-60               | < 14          |
|                        | 30    | 38 / 0                         | Zn-65               | < 26          |
|                        | 15    | 38 / 0                         | Nb-95               | < 12          |
|                        | 30    | 38 / 0                         | Zr-95               | < 19          |
|                        | 15    | 38 / 1                         | I-131               | < 16          |
|                        | 15    | 38 / 0                         | Cs-134              | < 11          |
|                        | 15    | 38 / 0                         | Cs-137              | < 14          |
|                        | 60    | 38 / 0                         | Ba-140              | < 50          |
|                        | 15    | 38 / 0                         | La-140              | < 15          |

Table 4. Sample activity summary for the Wisconsin DHS Point Beach - Kewaunee environmental monitoring program, continued.

| Sample type (units) | LLD   | Number of samples <sup>a</sup> | Analysis       | Range         |
|---------------------|-------|--------------------------------|----------------|---------------|
| Fish                |       |                                | gamma isotopic |               |
| (pCi/kg wet)        | 800   | 6/6                            | K-40           | 1090 – 3500   |
|                     | 50    | 6/0                            | Mn-54          | < 8           |
|                     | 60    | 6/0                            | Co-58          | < 9           |
|                     | 130   | 6/0                            | Fe-59          | < 28          |
|                     | 70    | 6/0                            | Co-60          | < 13          |
|                     | 130   | 6/0                            | Zn-65          | < 23          |
|                     | 50    | 6/0                            | Nb-95          | < 20          |
|                     | 100   | 6/ 0                           | Zr-95          | < 19          |
|                     | 50    | 6/0                            | Cs-134         | < 8           |
|                     | 60    | 6 / 0                          | Cs-137         | < 8 - 43      |
| Shoreline sediment  | 6000  | 7 / 1                          | gross alpha    | < 4070 - 7300 |
| (pCi/kg dry)        | 15000 | 7/0                            | gross beta     | 2900 - 5150   |
|                     |       |                                | gamma isotopic |               |
|                     | 800   | 7 / 7                          | K-40           | 2430 – 6700   |
|                     | 60    | 7 / 0                          | Mn-54          | < 23          |
|                     | 90    | 7 / 0                          | Co-58          | < 22          |
|                     | 600   | 7 / 0                          | Fe-59          | < 46          |
|                     | 90    | 7 / 0                          | Co-60          | < 27          |
|                     | 300   | 7 / 0                          | Zn-65          | < 44          |
|                     | 100   | 7 / 0                          | Nb-95          | < 40          |
|                     | 200   | 7 / 0                          | Zr-95          | < 44          |
|                     | 80    | 7 / 0                          | Cs-134         | < 21          |
|                     | 80    | 7/3                            | Cs-137         | < 33 – 23     |
| Vegetation          | 6000  | 18 / 18                        | gross alpha    | < 2560 - 3390 |
| (pCi/kg wet)        | 4000  | 18 / 18                        | gross beta     | < 631- 7200   |
| , ,                 |       |                                | gamma isotopic |               |
|                     | 600   | 18 / 13                        | Be-7           | 233 - 8720    |
|                     | 2000  | 18 / 18                        | K-40           | 2480 – 6190   |
|                     | 90    | 18 / 0                         | Mn-54          | < 31          |
|                     | 100   | 18 / 0                         | Co-58          | < 59          |
|                     | 200   | 18 / 0                         | Fe-59          | < 95          |
|                     | 100   | 18 / 0                         | Co-60          | < 47          |
|                     | 250   | 18 / 0                         | Zn-65          | < 67          |
|                     | 100   | 18 / 0                         | Nb-95          | < 40          |
|                     | 200   | 18 / 0                         | Zr-95          | < 82          |
|                     | 80    | 18 / 4                         | I-131          | < 83          |
|                     | 80    | 18 / 0                         | Cs-134         | < 31          |
|                     | 90    | 18 / 0                         | Cs-137         | < 140         |
|                     | 350   | 18 / 0                         | Ba-140         | < 219         |
|                     | 100   | 18 / 0                         | La-140         | < 89          |

Table 4. Sample activity summary for the Wisconsin DHS Point Beach - Kewaunee environmental monitoring program, continued.

| Sample type (units)               | LLD              | Number of samples <sup>a</sup> | Analysis       | Range        |
|-----------------------------------|------------------|--------------------------------|----------------|--------------|
| Cc.ii                             | 6000             | 40 / 0                         | aroo eleke     | -4000 0000   |
| Soil                              | 6000             | 18 / 9                         | gross alpha    | <4000 – 9800 |
| (pCi/kg dry)                      | 13000            | 18 / 14                        | gross beta     | 1500 – 30700 |
|                                   |                  |                                | gamma isotopic |              |
|                                   | 800              | 18 / 18                        | K-40           | 1760 – 20900 |
|                                   | 60               | 18 / 0                         | Mn-54          | < 44         |
|                                   | 90               | 18 / 0                         | Co-58          | < 39         |
|                                   | 600              | 18 / 0                         | Fe-59          | < 116        |
|                                   | 90               | 18 / 0                         | Co-60          | < 56         |
|                                   | 300              | 18 / 0                         | Zn-65          | < 6116       |
|                                   | 100              | 18 / 0                         | Nb-95          | < 53         |
|                                   | 250              | 18 / 0                         | Zr-95          | < 72         |
|                                   | 80               | 18 / 0                         | Cs-134         | < 36         |
|                                   | 80               | 18 / 13                        | Cs-137         | < 25 - 231   |
| Milk                              | 0.5              | 12/6 d                         | I-131          | < 3.1        |
| (pCi/liter)                       | 1.5              | 36/8 d                         | Sr-90          | < 0.7 – 0.8  |
| ,                                 |                  |                                | gamma isotopic |              |
|                                   | 500              | 36 / 36                        | K-40           | 1240 – 1690  |
|                                   | 15               | 36 / 0                         | Mn-54          | < 13         |
|                                   | 15               | 36 / 0                         | Co-58          | < 13         |
|                                   | 40               | 36 / 0                         | Fe-59          | < 27         |
|                                   | 15               | 36 / 0                         | Co-60          | < 15         |
|                                   | 40               | 36 / 0                         | Zn-65          | < 30         |
|                                   | 15               | 36 / 0                         | Nb-95          | < 13         |
|                                   | 40               | 36 / 0                         | Zr-95          | < 18         |
|                                   | 15               | 36 / 0                         | I-131          | < 15         |
|                                   | 15               | 36 / 0                         | Cs-134         | < 12         |
|                                   | 15               | 36 / 0                         | Cs-137         | < 15         |
|                                   | 60               | 36 / 0                         | Ba-140         | < 47         |
|                                   | 15               | 36 / 0                         | La-140         | < 16         |
| Well water                        | 5.0              | 10 / 1                         | gross alpha    | < 2.5 – 5.1  |
| (pCi/liter)                       | 3.0              | 10 / 0                         | gross beta     | < 1.4 – 2.6  |
| (powner)                          | 300 b            | 10 / 0                         | H-3            | < 220        |
| Precipitation                     | 1.5 <sup>b</sup> | 12 / 0                         | gross beta     | < 0.24– 0.74 |
| (nCi/m <sup>2</sup> )             | 300 b            | 12/0                           | H-3            | < 48         |
| ambient radiation<br>(mR/Std Qtr) | 1.0 <sup>c</sup> | 122 / 122                      | exposure       | 8.4 - 62.8   |

a - Number of analyses / number of analyses detected above the WI DHS LLD.

b - LLD activities expressed in units of pCi/liter.

c - mR/TLD

d – Samples not analyzed due to laboratory error and delays, see result and discussion section.

Table 5 Wisconsin DHS air particulate gross beta and air iodine (I-131) analysis results from the Point Beach – Kewaunee

Measurements in units of pCi/m³

Site: PBK-1

| Collection      | Volume |                           |                 | Volume |                   |
|-----------------|--------|---------------------------|-----------------|--------|-------------------|
| date            | $m^3$  | Air Particulate           | Collection date | $m^3$  | Air Particulate   |
| 01/02/14        | 583    | 0.032 ± 0.003             | 07/02/14        | 532    | 0.017 ± 0.002     |
| 01/08/14        | 498    | 0.026 ± 0.003             | 07/09/14        | 515    | 0.012 ± 0.002     |
| 01/16/14        | 662    | 0.021 ± 0.002             | 07/16/14        | 505    | 0.013 ± 0.002     |
| 01/22/14        | 494    | 0.016 ± 0.002             | 07/23/14        | 532    | 0.024 ± 0.003     |
| 01/30/14        | 656    | 0.015 ± 0.002             | 07/30/14        | 556    | 0.013 ± 0.002     |
| 02/05/14        | 498    | $0.021 \pm 0.003$         | 08/06/14        | 542    | 0.018 ± 0.002     |
| 02/12/14        | 577    | $0.018 \pm 0.002$         | 08/13/14        | 546    | 0.016 ± 0.002     |
| 02/19/14        | 570    | $0.025 \pm 0.003$         | 08/20/14        | 539    | $0.012 \pm 0.002$ |
| 02/26/14        | 577    | $0.026 \pm 0.003$         | 08/27/14        | 539    | $0.015 \pm 0.002$ |
| 03/05/14        | 573    | $0.025 \pm 0.002$         | 09/03/14        | 532    | $0.017 \pm 0.002$ |
| 03/12/14        | 570    | $0.023 \pm 0.002$         | 09/09/14        | 481    | $0.020 \pm 0.003$ |
| 03/19/14        | 577    | $0.013 \pm 0.002$         | 09/17/14        | 611    | $0.015 \pm 0.002$ |
| 03/27/14        | 649    | $0.021 \pm 0.002$         | 09/24/14        | 546    | $0.019 \pm 0.002$ |
| 01/02/14        | 583    | $0.032 \pm 0.003$         | 07/02/14        | 532    | $0.017 \pm 0.002$ |
| 1st Qtr         |        |                           | 3rd Qtr         |        |                   |
| mean +- s.d.    |        | $0.022 \pm 0.005$         | mean +- s.d.    |        | $0.016 \pm 0.003$ |
|                 |        |                           |                 |        |                   |
|                 |        |                           |                 |        |                   |
|                 |        |                           |                 |        |                   |
| 04/02/14        | 487    | $0.018 \pm 0.003$         | 10/01/14        | 546    | $0.021 \pm 0.002$ |
| 04/09/14        | 573    | $0.020 \pm 0.002$         | 10/08/14        | 549    | $0.014 \pm 0.002$ |
| 04/16/14        | 566    | $0.014 \pm 0.002$         | 10/15/14        | 542    | $0.013 \pm 0.002$ |
| 04/23/14        | 570    | $0.017 \pm 0.002$         | 10/23/14        | 625    | $0.009 \pm 0.002$ |
| 04/30/14        | 563    | $0.013 \pm 0.002$         | 10/29/14        | 467    | $0.021 \pm 0.003$ |
| 05/07/14        | 546    | $0.007 \pm 0.002$         | 11/05/14        | 559    | $0.015 \pm 0.002$ |
| 05/15/14        | 621    | $0.013 \pm 0.002$         | 11/13/14        | 514    | $0.010 \pm 0.002$ |
| 05/21/14        | 467    | $0.019 \pm 0.003$         | 11/18/14        | 497    | $0.020 \pm 0.003$ |
| 05/28/14        | 539    | $0.015 \pm 0.002$         | 11/26/14        | 632    | $0.019 \pm 0.002$ |
| 06/04/14        | 539    | $0.012 \pm 0.002$         | 12/03/14        | 563    | $0.028 \pm 0.003$ |
| 06/11/14        | 539    | $0.012 \pm 0.002$         | 12/10/14        | 563    | $0.032 \pm 0.003$ |
| 06/18/14        | 535    | $0.014 \pm 0.002$         | 12/17/14        | 552    | $0.029 \pm 0.003$ |
| 06/25/14        | 539    | $0.009 \pm 0.002$         | 12/23/14        | 469    | $0.023 \pm 0.003$ |
| 2nd Qtr         |        |                           | 4th Qtr         |        |                   |
| mean +- s.d.    |        | 0.014 ± 0.004             | mean +- s.d.    |        | 0.020 ± 0.007     |
| 1110aii T- 3.U. |        | 0.017 ± 0.00 <del>4</del> | mean +- 3.u.    |        | 0.020 ± 0.001     |

Table 5. Wisconsin DHS air particulate gross beta and air iodine (I-131) analysis results from the Point Beach – Kewaunee environmental monitoring program, continued.

Measurements in units of pCi/m<sup>3</sup>

| Site: F | BK-4 |
|---------|------|
|---------|------|

| Collection   | Volume | <b>)</b>          |            | Collection   | Volume |                   |            |
|--------------|--------|-------------------|------------|--------------|--------|-------------------|------------|
| date         | $m^3$  | Air particulate   | Air iodine | date         | $m^3$  | Air particulate   | Air iodine |
|              |        | ·                 |            |              |        | ·                 |            |
| 01/08/14     | 594    | 0.027 ± 0.002     | < 0.007    | 07/09/14     | 729    | 0.011 ± 0.002     | < 0.013    |
| 01/13/14     | 376    | 0.017 ± 0.003     | < 0.009    | 07/14/14     | 408    | $0.013 \pm 0.003$ | < 0.024    |
| 01/20/14     | 524    | 0.021 ± 0.002     | < 0.008    | 07/21/14     | 570    | $0.013 \pm 0.002$ | < 0.009    |
| 01/27/14     | 473    | 0.014 ± 0.002     | < 0.018    | 07/28/14     | 569    | $0.018 \pm 0.002$ | < 0.018    |
| 02/03/14     | 475    | 0.021 ± 0.003     | < 0.047    | 08/04/14     | 566    | $0.018 \pm 0.002$ | < 0.013    |
| 02/12/14     | 629    | 0.020 ± $0.002$   | < 0.008    | 08/13/14     | 724    | $0.013 \pm 0.002$ | < 0.128    |
| 02/17/14     | 358    | 0.027 ± 0.004     | < 0.028    | 08/18/14     | 403    | 0.011 ± 0.003     | < 0.238    |
| 02/24/14     | 514    | $0.025 \pm 0.003$ | < 0.013    | 08/25/14     | 567    | $0.017 \pm 0.002$ | < 0.022    |
| 03/03/14     | 468    | 0.033 ± 0.003     | < 0.010    | 09/02/14     | 645    | $0.015 \pm 0.002$ | < 0.021    |
| 03/12/14     | 703    | 0.021 ± $0.002$   | < 0.011    | 09/10/14     | 643    | $0.019 \pm 0.002$ | < 0.011    |
| 03/17/14     | 382    | 0.014 ± 0.003     | < 0.011    | 09/15/14     | 393    | $0.009 \pm 0.003$ | < 0.020    |
| 03/24/14     | 570    | 0.018 ± 0.002     | < 0.013    | 09/22/14     | 542    | $0.021 \pm 0.002$ | < 0.013    |
| 03/31/14     | 546    | 0.023 ± 0.003     | < 0.010    | 09/29/14     | 552    | 0.026 ± 0.003     | < 0.031    |
| 1st Qtr      |        |                   |            | 3rd Qtr      |        |                   |            |
| mean +- s.d. |        | 0.022 ± 0.005     | < 0.015    | mean +- s.d. |        | 0.016 ± 0.005     | < 0.043    |
|              |        |                   |            |              |        |                   |            |
|              |        |                   |            |              |        |                   |            |
| 04/09/14     | 720    | 0.019 ± 0.002     | < 0.004    | 10/08/14     | 690    | 0.013 ± 0.002     | < 0.008    |
| 04/14/14     | 397    | 0.011 ± 0.003     | < 0.020    | 10/13/14     | 379    | 0.013 ± 0.003     | < 0.019    |
| 04/21/14     | 627    | $0.024 \pm 0.002$ | < 0.008    | 10/20/14     | 536    | 0.008 ± 0.002     | < 0.021    |
| 04/28/14     | 556    | 0.015 ± 0.002     | < 0.009    | 10/27/14     | 534    | 0.015 ± 0.002     | < 0.014    |
| 05/05/14     | 564    | $0.008 \pm 0.002$ | < 0.014    | 11/03/14     | 519    | 0.014 ± 0.002     | < 0.033    |
| 05/14/14     | 726    | 0.013 ± 0.002     | < 0.011    | 11/12/14     | 676    | 0.014 ± 0.002     | < 0.011    |
| 05/19/14     | 403    | 0.013 ± 0.003     | < 0.011    | 11/17/14     | 356    | 0.019 ± 0.003.    | < 0.028    |
| 05/27/14     | 658    | 0.015 ± 0.002     | < 0.014    | 11/24/14     | 494    | 0.021 ± 0.003     | < 0.025    |
| 06/02/14     | 493    | 0.010 ± 0.002     | < 0.013    | 12/01/14     | 505    | 0.021 ± 0.003     | < 0.020    |
| 06/11/14     | 722    | 0.011 ± 0.002     | < 0.011    | 12/10/14     | 670    | 0.028 ± 0.002     | < 0.017    |
| 06/16/14     | 407    | 0.010 ± 0.003     | < 0.011    | 12/16/14     | 460    | 0.029 ± 0.003     | < 0.025    |
| 06/23/14     | 571    | 0.008 ± 0.002     | < 0.021    | 12/22/14     | 450    | 0.017 ± 0.003     | < 0.029    |
| 06/30/14     | 573    | 0.013 ± 0.002     | < 0.021    | 12/29/14     | 540    | 0.021 ± 0.002     | < 0.024    |
| 2nd Qtr      |        |                   |            | 4th Qtr      |        |                   |            |
| mean +- s.d. |        | 0.013 ± 0.004     | < 0.013    | mean +- s.d. |        | 0.018 ± 0.006     | < 0.021    |

Table 5. Wisconsin DHS air particulate gross beta and air iodine (I-131) analysis results from the Point Beach – Kewaunee environmental monitoring program, continued.

| Measuremer   | nts in units o | f pCi/m <sup>3</sup> |              |        |                   |
|--------------|----------------|----------------------|--------------|--------|-------------------|
| Site: PBK-7  |                |                      |              |        |                   |
| Collection   | Volume         |                      | Collection   | Volume |                   |
| date         | $m^3$          | Air particulate      | date         | $m^3$  | Air particulate   |
| 01/02/14     | 416            | 0.035 ± 0.003        | 07/02/14     | 290    | 0.017 ± 0.004     |
| 01/08/14     | 363            | 0.028 ± 0.004        | 07/09/14     | 321    | 0.014 ± 0.003     |
| 01/16/14     | 461            | $0.023 \pm 0.003$    | 07/16/14     | 363    | 0.014 ± 0.003     |
| 01/22/14     | 332            | 0.019 ± 0.003        | 07/23/14     | 356    | $0.030 \pm 0.004$ |
| 01/30/14     | 454            | 0.016 ± 0.003        | 07/30/14     | 367    | 0.016 ± 0.003     |
| 02/05/14     | 349            | $0.023 \pm 0.003$    | 08/06/14     | 353    | $0.023 \pm 0.003$ |
| 02/12/14     | 402            | 0.018 ± 0.003        | 08/13/14     | 279    | 0.025 ± 0.004     |
| 02/19/14     | 363            | $0.030 \pm 0.004$    | 08/20/14     | 276    | 0.017 ± 0.004     |
| 02/26/14     | 377            | $0.031 \pm 0.004$    | 08/27/14     | 331    | 0.021 ± 0.004     |
| 03/05/14     | 409            | $0.032 \pm 0.003$    | 09/03/14     | 331    | 0.020 ± 0.003     |
| 03/12/14     | 388            | $0.024 \pm 0.003$    | 09/09/14     | 283    | $0.024 \pm 0.004$ |
| 03/19/14     | 402            | 0.018 ± 0.003        | 09/17/14     | 378    | 0.018 ± 0.003     |
| 03/27/14     | 433            | $0.024 \pm 0.003$    | 09/24/14     | 331    | 0.026 ± 0.004     |
| 1st Qtr      |                |                      | 3rd Qtr      |        |                   |
| nean +- s.d. |                | 0.025 ± 0.006        | mean +- s.d. |        | 0.020 ± 0.005     |
| 04/02/14     | 328            | 0.022 ± 0.004        | 10/01/14     | 220    | 0.039 ± 0.006     |
| 04/09/14     | 398            | $0.021 \pm 0.003$    | 10/08/14     | 136    | 0.043 ± 0.008     |
| 04/16/14     | 381            | 0.014 ± 0.003        | 10/15/14     | 234    | 0.022 ± 0.005     |
| 04/23/14     | 395            | $0.021 \pm 0.003$    | 10/23/14     | 267    | 0.016 ± 0.003     |
| 04/30/14     | 398            | 0.016 ± 0.003        | 10/29/14     | 240    | $0.024 \pm 0.004$ |
| 05/07/14     | 402            | $0.007 \pm 0.002$    | 11/05/14     | 551    | 0.013 ± 0.002     |
| 05/15/14     | 436            | $0.015 \pm 0.003$    | 11/13/14     | 631    | 0.011 ± 0.002     |
| 05/21/14     | 339            | $0.024 \pm 0.004$    | 11/18/14     | 403    | 0.019 ± 0.003     |
| 05/28/14     | 388            | 0.016 ± 0.003        | 11/26/14     | 648    | 0.018 ± 0.002     |
| 06/04/14     | 374            | 0.013 ± 0.003        | 12/03/14     | 558    | $0.024 \pm 0.002$ |
| 06/11/14     | 381            | 0.014 ± 0.003        | 12/10/14     | 563    | $0.031 \pm 0.003$ |
| 06/18/14     | 353            | 0.014 ± 0.003        | 12/17/14     | 551    | 0.026 ± 0.003     |
| 06/25/14     | 363            | 0.010 ± 0.003        | 12/23/14     | 478    | $0.023 \pm 0.003$ |
|              |                |                      | 12/30/14     | 553    | 0.021 0.002       |
| 2nd Qtr      |                |                      | 4th Qtr      |        |                   |
| mean +- s.d. |                | 0.016 ± 0.005        | mean +- s.d. |        | 0.024 ± 0.009     |

Table 5. Wisconsin DHS air particulate gross beta and air iodine (I-131) analysis results from the Point Beach – Kewaunee environmental monitoring program, continued.

| Measuremen   | nts in units of | pCi/m <sup>3</sup>       |              |        |                          |
|--------------|-----------------|--------------------------|--------------|--------|--------------------------|
| Site: PBK-8  |                 |                          |              |        |                          |
| Collection   | Volume          |                          | Collection   | Volume |                          |
| date         | $m^3$           | Air particulate          | date         | $m^3$  | Air particulate          |
| 01/07/14     | 485             | 0.024 ± 0.003            | 07/08/14     | 466    | 0.014 ± 0.002            |
| 01/14/14     | 495             | $0.023 \pm 0.003$        | 07/15/14     | 488    | 0.012 ± 0.002            |
| 01/21/14     | 482             | $0.020 \pm 0.003$        | 07/22/14     | 450    | $0.023 \pm 0.003$        |
| 01/28/14     | 501             | $0.017 \pm 0.002$        | 07/29/14     | 476    | 0.017 ± 0.003            |
| 02/04/14     | 517             | $0.017 \pm 0.002$        | 08/05/14     | 463    | $0.021 \pm 0.003$        |
| 02/11/14     | 536             | 0.018 ± 0.002            | 08/12/14     | 473    | $0.018 \pm 0.003$        |
| 02/18/14     | 490             | $0.026 \pm 0.003$        | 08/19/14     | 460    | 0.011 ± 0.002            |
| 02/25/14     | 490             | $0.028 \pm 0.004$        | 08/26/14     | 460    | $0.020 \pm 0.003$        |
| 03/04/14     | 527             | $0.030 \pm 0.003$        | 09/02/14     | 454    | $0.015 \pm 0.003$        |
| 03/11/14     | 507             | $0.025 \pm 0.003$        | 09/09/14     | 463    | $0.022 \pm 0.003$        |
| 03/18/14     | 501             | 0.018 ± 0.002            | 09/16/14     | 473    | 0.016 ± 0.003            |
| 03/25/14     | 488             | 0.023 ± 0.003            | 09/23/14     | 469    | 0.022 ± 0.003            |
| 04/01/14     | 476             | 0.021 ± 0.003            | 09/30/14     | 469    | 0.025 ± 0.003            |
| 1st Qtr      |                 |                          | 3rd Qtr      |        |                          |
| mean +- s.d. |                 | $0.022 \pm 0.004$        | mean +- s.d. |        | 0.018 ± 0.004            |
|              |                 |                          |              |        |                          |
| 04/08/14     | 482             | 0.021 ± 0.003            | 10/07/14     | 482    | 0.014 ± 0.002            |
| 04/15/14     | 476             | 0.014 ± 0.002            | 10/14/14     | 473    | 0.015 ± 0.002            |
| 04/22/14     | 476             | 0.025 ± 0.003            | 10/21/14     | 479    | $0.009 \pm 0.002$        |
| 04/29/14     | 473             | $0.016 \pm 0.003$        | 10/28/14     | 466    | $0.019 \pm 0.003$        |
| 05/06/14     | 485             | $0.007 \pm 0.002$        | 11/04/14     | 568    | $0.014 \pm 0.002$        |
| 05/13/14     | 479             | $0.017 \pm 0.003$        | 11/11/14     | 571    | $0.016 \pm 0.002$        |
| 05/20/14     | 482             | 0.014 ± 0.002            | 11/18/14     | 584    | 0.016 ± 0.002            |
| 05/27/14     | 488             | $0.017 \pm 0.002$        | 11/25/14     | 622    | $0.019 \pm 0.002$        |
| 06/03/14     | 495             | $0.012 \pm 0.002$        | 12/02/14     | 587    | $0.030 \pm 0.003$        |
| 06/10/14     | 485             | $0.012 \pm 0.002$        | 12/09/14     | 596    | $0.037 \pm 0.003$        |
| 06/17/14     | 492             | $0.014 \pm 0.003$        | 12/16/14     | 577    | $0.036 \pm 0.003$        |
| 06/24/14     | 479             | $0.010 \pm 0.002$        | 12/23/14     | 568    | $0.022 \pm 0.002$        |
| 07/01/14     | 479             | 0.017 ± 0.003            | 12/30/14     | 580    | 0.023 ± 0.002            |
| 2nd Qtr      |                 |                          | 4th Qtr      |        |                          |
| mean +- s.d. |                 | 0.015 <sub>±</sub> 0.005 | mean +- s.d. |        | 0.021 <sub>±</sub> 0.009 |

Table 5. Wisconsin DHS air particulate gross beta and air iodine (I-131) analysis results from the Point Beach – Kewaunee environmental monitoring program, continued.

Measurements in units of pCi/m<sup>3</sup>

| Site: | <b>PBK-17</b> | 7 |
|-------|---------------|---|
|       |               |   |

| Collection           | Volume     | !              |        |         |                    | Collection   | Volume     |                |       |       |     |                    |
|----------------------|------------|----------------|--------|---------|--------------------|--------------|------------|----------------|-------|-------|-----|--------------------|
| date                 | $m^3$      | Air p          | arti   | iculate | Air iodine         | date         | $m^3$      | Air p          | artic | ulate | Air | iodine             |
| 01/03/14             | 566        | 0.024          | ±      | 0.002   | < 0.021            | 07/03/14     | 451        | 0.011          | ±     | 0.002 | <   | 0.015              |
| 01/09/14             | 503        | 0.023          | ±      | 0.003   | < 0.019            | 07/10/14     | 537        | 0.013          | ±     | 0.002 | <   | 0.017              |
| 01/17/14             | 633        | 0.020          | ±      | 0.002   | < 0.014            | 07/17/14     | 520        | 0.011          | ±     | 0.002 | <   | 0.011              |
| 01/23/14             | 481        | 0.017          | ±      | 0.003   | < 0.010            | 07/25/14     | 605        | 0.021          | ±     | 0.002 | <   | 0.027              |
| 01/30/14             | 591        | 0.015          | ±      | 0.002   | < 0.010            | 08/01/14     | 522        | 0.015          | ±     | 0.002 | <   | 0.022              |
| 02/07/14             | 639        | 0.017          | ±      | 0.002   | < 0.013            | 08/07/14     | 456        | 0.020          | ±     | 0.003 | <   | 0.027              |
| 02/14/14             | 577        | 0.023          | ±      | 0.002   | < 0.022            | 08/15/14     | 592        | 0.015          | ±     | 0.002 | <   | 0.027              |
| 02/21/14             | 564        | 0.019          | ±      | 0.002   | < 0.011            | 08/22/14     | 531        | 0.013          | ±     | 0.002 | <   | 0.026              |
| 02/28/14             | 560        | 0.030          | ±      | 0.003   | < 0.012            | 08/29/14     | 516        | 0.018          | ±     | 0.002 | <   | 0.059              |
| 03/07/14             | 558        | 0.025          | ±      | 0.003   | < 0.017            | 09/05/14     | 525        | 0.019          | ±     | 0.002 | <   | 0.031              |
| 03/14/14             | 554        | 0.022          | ±      | 0.002   | < 0.010            | 09/12/14     | *b         | *b             | ±     | *b    | <   | *b                 |
| 03/20/14             | 480        | 0.013          | ±      | 0.002   | < 0.019            | 09/19/14     | *b         | *b             | ±     | *b    | <   | *b                 |
| 03/28/14             | 646        | 0.022          | ±      | 0.002   | < 0.061            | 09/26/14     | 532        | 0.023          | ±     | 0.003 | <   | 0.019              |
| 1st Qtr              |            |                |        |         |                    | 3rd Qtr      |            |                |       |       |     |                    |
| mean +- s.d.         |            | 0.021          | ±      | 0.005   | < 0.018            | mean +- s.d. |            | 0.016          |       | 0.004 |     | 0.016              |
| mount o.u.           |            | 0.021          | ±      | 0.000   | 0.010              | modil i o.d. |            | 0.010          | Ι     | 0.001 | <   | 0.010              |
|                      |            |                |        |         |                    |              |            |                |       |       |     |                    |
| 04/04/44             | E 4 0      | 0.010          |        | 0.002   | . 0.010            | 10/02/14     | 455        | 0.040          | ±     | 0.003 |     | 0.020              |
| 04/04/14             | 548<br>558 | 0.019<br>0.017 | ±      | 0.002   | < 0.019            | 10/02/14     | 455        | 0.018<br>0.013 | ±     | 0.003 |     | 0.038              |
| 04/11/14<br>04/17/14 | 336<br>462 | 0.017          | ±<br>± | 0.002   | < 0.023<br>< 0.010 | 10/16/14     | 616<br>452 | 0.013          | ±     | 0.002 | <   | 0.010<br><b>*a</b> |
| 04/17/14             | 619        | 0.014          | ±      | 0.003   | < 0.010            | 10/16/14     | 610        | 0.010          | ±     | 0.002 |     | 0.023              |
| 05/02/14             | 537        | 0.013          | ±      | 0.002   | < 0.010            | 10/30/14     | 462        | 0.010          | ±     | 0.002 |     | 0.023              |
| 05/02/14             | 546        | 0.010          | ±      | 0.002   | < 0.020            | 11/07/14     | 632        | 0.019          | ±     | 0.003 |     | 0.034              |
| 05/09/14             | 540        | 0.011          | ±      | 0.002   | < 0.022            | 11/14/14     | 560        | 0.014          | ±     | 0.002 |     | 0.019              |
| 05/22/14             | 454        | 0.011          | ±      | 0.002   | < 0.016            | 11/21/14     | 565        | 0.012          | ±     | 0.002 |     | 0.020              |
| 05/22/14             | 529        | 0.019          | ±      | 0.003   | < 0.010            | 11/26/14     | 398        | 0.022          | ±     | 0.002 |     | 0.029              |
| 06/06/14             | 605        | 0.009          | ±      | 0.002   | < 0.012            | 12/05/14     | 728        | 0.023          | ±     | 0.003 |     | 0.024              |
| 06/00/14             | 531        | 0.009          | ±      | 0.002   | < 0.020            | 12/03/14     | 678        | 0.030          | ±     | 0.002 |     | 0.019              |
|                      |            |                |        |         |                    |              |            |                |       |       |     |                    |
| 06/20/14             | 531<br>534 | 0.012          | ±      | 0.002   | < 0.025            | 12/19/14     | 552<br>554 | 0.024          | ±     | 0.003 |     | 0.015              |
| 06/27/15             | 524        | 0.009          | ±      | 0.002   | < 0.026            | 12/26/14     | 554        | 0.022          | ±     | 0.002 | <   | 0.009              |
| 07/03/14             | 451        | 0.011          |        | 0.002   | < 0.015            | 10/24/14     | 455        | 0.018          |       | 0.003 |     | 0.038              |
| 2nd Qtr              |            |                |        |         |                    | 4th Qtr      |            |                |       |       |     |                    |
| mean +- s.d.         |            | 0.013          | ±      | 0.004   | < 0.018            | mean +- s.d. |            | 0.019          | ±     | 0.007 | <   | 0.023              |
|                      |            |                |        |         |                    |              |            |                |       |       |     |                    |

<sup>\*</sup>a - Laboratory error

 $<sup>^{\</sup>star}\text{b}-\text{Error}$  in recording data in the field

Table 5. Wisconsin DHS air particulate gross beta and air iodine (I-131) analysis results from the Point Beach – Kewaunee environmental monitoring program, continued.

| Site: | PB | K-1 | 18 |
|-------|----|-----|----|
|-------|----|-----|----|

| Site: PBK-18 | 5           |                          |            |              |        |          |       |        |       |       |
|--------------|-------------|--------------------------|------------|--------------|--------|----------|-------|--------|-------|-------|
| Collection   | Volume      | •                        |            | Collection   | Volume | <b>;</b> |       |        |       |       |
| date         | ${\sf m}^3$ | Air particulate          | Air iodine | date         | $m^3$  | Air p    | artio | culate | Air i | odine |
| 01/08/14     | 840         | 0.026 ± 0.002            | < 0.006    | 07/09/14     | 780    | 0.011    | ±     | 0.002  | <     | 0.013 |
| 01/13/14     | 460         | 0.017 ± 0.003            | < 0.020    | 07/14/14     | 436    | 0.012    | ±     | 0.002  | <     | 0.011 |
| 01/20/14     | 642         | 0.020 ± 0.002            | < 0.008    | 07/21/14     | 610    | 0.015    | ±     | 0.002  | <     | 0.007 |
| 01/27/14     | 654         | 0.013 ± 0.002            | < 0.011    | 07/28/14     | 605    | 0.018    | ±     | 0.002  | <     | 0.018 |
| 02/03/14     | 657         | 0.016 ± 0.002            | < 0.019    | 08/04/14     | 608    | 0.019    | ±     | 0.002  | <     | 0.013 |
| 02/12/14     | 843         | $0.019 \pm 0.002$        | < 0.012    | 08/13/14     | 774    | 0.013    | ±     | 0.002  | <     | 0.011 |
| 02/17/14     | 442         | $0.025 \pm 0.003$        | < 0.025    | 08/18/14     | 433    | 0.010    | ±     | 0.002  | <     | 0.023 |
| 02/24/14     | 650         | $0.022 \pm 0.002$        | < 0.007    | 08/25/14     | 603    | 0.015    | ±     | 0.002  | <     | 0.020 |
| 03/03/14     | 655         | $0.031 \pm 0.002$        | < 0.010    | 09/02/14     | 692    | 0.013    | ±     | 0.002  | <     | 0.016 |
| 03/12/14     | 827         | $0.021 \pm 0.002$        | < 0.008    | 09/10/14     | 692    | 0.018    | ±     | 0.002  | <     | 0.019 |
| 03/17/14     | 459         | $0.016 \pm 0.003$        | < 0.011    | 09/15/14     | 445    | 0.009    | ±     | 0.002  | <     | 0.023 |
| 03/24/14     | 664         | $0.018 \pm 0.002$        | < 0.008    | 09/22/14     | 610    | 0.022    | ±     | 0.002  | <     | 0.011 |
| 03/31/14     | 639         | 0.021 ± 0.002            | < 0.008    | 09/29/14     | 607    | 0.022    | ±     | 0.002  | <     | 0.030 |
| 1st Qtr      |             |                          |            | 3rd Qtr      |        |          |       |        |       |       |
| mean +- s.d. |             | 0.020 <sub>±</sub> 0.005 | < 0.012    | mean +- s.d. |        | 0.015    | ±     | 0.004  | < (   | 0.017 |
|              |             |                          |            |              |        |          |       |        |       |       |
|              |             |                          |            |              |        |          |       |        |       |       |
| 04/09/14     | 824         | 0.019 ± 0.002            | < 0.005    | 10/08/14     | 798    | 0.012    | ±     | 0.002  | <     | 0.005 |
| 04/14/14     | 447         | 0.010 ± 0.002            | < 0.017    | 10/13/14     | 438    | 0.014    | ±     | 0.003  | <     | 0.017 |
| 04/21/14     | 627         | 0.019 ± 0.002            | < 0.007    | 10/20/14     | 621    | 0.007    | ±     | 0.002  | <     | 0.022 |
| 04/28/14     | 633         | 0.011 ± 0.002            | < 0.011    | 10/27/14     | 620    | 0.012    | ±     | 0.002  | <     | 0.016 |
| 05/05/14     | 633         | 0.006 ± 0.002            | < 0.007    | 11/03/14     | 773    | 0.015    | ±     | 0.002  | <     | 0.030 |
| 05/14/14     | 807         | 0.012 ± 0.002            | < 0.008    | 11/12/14     | 842    | 0.013    | ±     | 0.002  | <     | 0.011 |
| 05/19/14     | 450         | 0.012 ± 0.002            | < 0.016    | 11/17/14     | 479    | 0.019    | ±     | 0.003  | <     | 0.021 |
| 05/27/14     | 716         | 0.016 ± 0.002            | < 0.020    | 11/24/14     | 672    | 0.020    | ±     | 0.002  | <     | 0.020 |
| 06/02/14     | 533         | 0.010 ± 0.002            | < 0.009    | 12/01/14     | 670    | 0.021    | ±     | 0.002  | <     | 0.013 |
| 06/11/14     | 779         | $0.009 \pm 0.002$        | < 0.009    | 12/10/14     | 854    | 0.028    | ±     | 0.002  | <     | 0.012 |
| 06/16/14     | 441         | 0.011 ± 0.002            | < 0.015    | 12/16/14     | 569    | 0.030    | ±     | 0.003  | <     | 0.017 |
| 06/23/14     | 613         | 0.010 ± 0.002            | < 0.017    | 12/22/14     | 571    | 0.019    | ±     | 0.002  | <     | 0.022 |
| 06/30/14     | 610         | 0.014 ± 0.002            | < 0.018    | 12/29/14     | 668    | 0.022    | ±     | 0.002  | <     | 0.020 |
|              |             |                          |            |              |        |          |       |        |       |       |
| 2nd Qtr      |             |                          |            | 4th Qtr      |        |          |       |        |       |       |
| mean +- s.d. |             | $0.012 \pm 0.004$        | < 0.012    | mean +- s.d. |        | 0.018    | ±     | 0.007  | < (   | 0.017 |

Table 6 Wisconsin DHS gamma isotopic analysis results from the quarterly composites of air particulate filters collected from the Point Beach – Kewaunee environmental monitoring program.

| Measurements in u<br>Site: PBK-1 |                      | 2nd quarter          | 3 <sup>rd</sup> quarter | Ath quarter          |
|----------------------------------|----------------------|----------------------|-------------------------|----------------------|
|                                  | 1st quarter          | 2nd quarter          |                         | 4th quarter          |
| Be-7                             | 0.044 +- 0.005       | 0.070 +- 0.007       | 0.064 +- 0.004          | 0.047 +- 0.005       |
| Mn-54                            | < 0.0003             | < 0.0005             | < 0.0002                | < 0.0004             |
| Co-58                            | < 0.0002             | < 0.0004             | < 0.0002                | < 0.0003             |
| Fe-59                            | < 0.0007             | < 0.0012             | < 0.0004                | < 0.0008             |
| Co-60                            | < 0.0003             | < 0.0007             | < 0.0002                | < 0.0005             |
| Zn-65                            | < 0.0005             | < 0.0011             | < 0.0004                | < 0.0008             |
| Nb-95                            | < 0.0004             | < 0.0006             | < 0.0003                | < 0.0004             |
| Zr-95                            | < 0.0005             | < 0.0008             | < 0.0003                | < 0.0007             |
| Ru-103                           | < 0.0003             | < 0.0006             | < 0.0002                | < 0.0004             |
| Ru-106                           | < 0.0026             | < 0.0040             | < 0.0015                | < 0.0033             |
| I-131                            | < 0.0013             | < 0.0014             | < 0.0018                | < 0.0013             |
| Cs-134                           | < 0.0003             | < 0.0005             | < 0.0002                | < 0.0004             |
| Cs-137                           | < 0.0002             | < 0.0006             | < 0.0002                | < 0.0004             |
| Ba-140                           | < 0.0021             | < 0.0030             | < 0.0025                | < 0.0026             |
| La-140                           | < 0.0011             | < 0.0015             | < 0.0009                | < 0.0010             |
| Ce-141                           | < 0.0005             | < 0.0009             | < 0.0004                | < 0.0007             |
| Ce-144                           |                      |                      |                         |                      |
| Site: PBK-4                      |                      |                      |                         |                      |
| Be-7                             | 0.052 +- 0.006       | 0.058 +- 0.006       | 0.056 +- 0.005          | 0.041 +- 0.005       |
| Mn-54                            | < 0.0005             | < 0.0003             | < 0.0002                | < 0.0003             |
| Co-58                            | < 0.0005 .           | < 0.0003             | < 0.0003                | < 0.0003             |
| Fe-59                            | < 0.0009             | < 0.0006             | < 0.0007                | < 0.0007             |
| Co-60                            | < 0.0007             | < 0.0004             | < 0.0003                | < 0.0004             |
| Zn-65                            | < 0.0012             | < 0.0011             | < 0.0005                | < 0.0007             |
| Nb-95                            | < 0.0006             | < 0.0004             | < 0.0003                | < 0.0004             |
| Zr-95                            | < 0.0009             | < 0.0004             | < 0.0005                | < 0.0007             |
| Ru-103                           | < 0.0006             | < 0.0002             | < 0.0004                | < 0.0004             |
| Ru-106                           | < 0.0039             | < 0.0024             | < 0.0023                | < 0.0031             |
| I-131                            | < 0.0015             | < 0.0005             | < 0.0020                | < 0.0013             |
| Cs-134                           | < 0.0006             | < 0.0003             | < 0.0003                | < 0.0003             |
| Cs-137                           | < 0.0005             | < 0.0003             | < 0.0004                | < 0.0003             |
| Ba-140                           | < 0.0031             | < 0.0010             | < 0.0030                | < 0.0021             |
| La-140                           | < 0.0012             | < 0.0006             | < 0.0012                | < 0.0010             |
| Ce-141                           | < 0.0012             | < 0.0004             | < 0.0006                | < 0.0005             |
| Ce-144                           | < 0.0032             | < 0.0014             | < 0.0016                | < 0.0014             |
| Cita. DDV 7                      |                      |                      |                         |                      |
| Site: PBK-7<br>Be-7              | 0.058 +- 0.007       | 0.070 +- 0.007       | 0.099 +- 0.006          | 0.007 +- 0.001       |
| Mn-54                            | < 0.0004             | < 0.0005             | < 0.0002                | < 0.0000             |
| Co-58                            | < 0.0004             | < 0.0005             | < 0.0002                | < 0.0000             |
| Fe-59                            | < 0.0004             | < 0.0000             | < 0.0002                | < 0.0001             |
| Co-60                            | < 0.0010             | < 0.0070             | < 0.0004                | < 0.0000             |
| Zn-65                            | < 0.0003             | < 0.0007             | < 0.0002                | < 0.0001             |
| Nb-95                            | 0.0000               | 0.0005               | 0.0000                  | 0.000                |
| Zr-95                            | < 0.0006<br>< 0.0007 | < 0.0005<br>< 0.0008 | < 0.0002<br>< 0.0003    | < 0.0000<br>< 0.0001 |
| Zi-93<br>Ru-103                  | 0.0005               | < 0.0005             | 0.0000                  | < 0.0000             |
| Ru-103<br>Ru-106                 | < 0.0005<br>< 0.0032 | 2 22 4 4             | 0.0040                  |                      |
| Ku-106<br>I-131                  | 0.0040               | 0.0047               |                         | 0.000                |
|                                  |                      |                      | < 0.0020                |                      |
| Cs-134<br>Cs-137                 | < 0.0004<br>< 0.0004 | < 0.0005<br>< 0.0006 | < 0.0002<br>< 0.0004    | < 0.0000<br>< 0.0000 |
|                                  |                      |                      |                         |                      |
| Ba-140                           | < 0.0037             | < 0.0034             | < 0.0025                | < 0.000              |
| La-140                           | < 0.0011             | < 0.0012             | < 0.0009                | < 0.0002             |
| Ce-141                           | < 0.0007             | < 0.0010             | < 0.0004                | < 0.000              |
| Ce-144                           | < 0.0019             | < 0.0031             | < 0.0010                | < 0.000              |

22

Table 6. Wisconsin DHS gamma isotopic analysis results from the quarterly composites of air particulate filters collected from the Point Beach – Kewaunee environmental monitoring program, continued.

| Measurements in u<br>Site: PBK-8 |                | 2nd quarter    | 3 <sup>rd</sup> quarter | 4th quarter    |
|----------------------------------|----------------|----------------|-------------------------|----------------|
|                                  | 1st quarter    |                |                         | •              |
| Be-7                             | 0.058 +- 0.006 | 0.070 +- 0.001 | 0.061 +- 0.004          | 0.047 +- 0.005 |
| Mn-54                            | < 0.0003       | < 0.0004       | < 0.0001                | < 0.0004       |
| Co-58                            | < 0.0003       | < 0.0004       | < 0.0002                | < 0.0004       |
| Fe-59                            | < 0.0009       | < 0.0009       | < 0.0004                | < 0.0008       |
| Co-60                            | < 0.0005       | < 0.0005       | < 0.0002                | < 0.0005       |
| Zn-65                            | < 0.0007       | < 0.0010       | < 0.0003                | < 0.0008       |
| Nb-95                            | < 0.0005       | < 0.0004       | < 0.0002                | < 0.0004       |
| Zr-95                            | < 0.0007       | < 0.0006       | < 0.0003                | < 0.0008       |
| Ru-103                           | < 0.0004       | < 0.0003       | < 0.0002                | < 0.0004       |
| Ru-106                           | < 0.0030       | < 0.0031       | < 0.0012                | < 0.0038       |
| I-131                            | < 0.0020       | < 0.0012       | < 0.0019                | < 0.0016       |
| Cs-134                           | < 0.0004       | < 0.0004       | < 0.0001                | < 0.0004       |
| Cs-137                           | < 0.0005       | < 0.0003       | < 0.0003                | < 0.0005       |
| Ba-140                           | < 0.0034       | < 0.0025       | < 0.0025                | < 0.0031       |
| La-140                           | < 0.0014       | < 0.0012       | < 0.0008                | < 0.0012       |
| Ce-141                           | < 0.0008       | < 0.0005       | < 0.0004                | < 0.0008       |
| Ce-144                           | < 0.0023       | < 0.0015       | < 0.0010                | < 0.0024       |
| Site: PBK-17                     |                |                |                         |                |
| Be-7                             | 0.044 +- 0.005 | 0.058 +- 0.006 | 0.039 +- 0.002          | 0.043 +- 0.005 |
| Mn-54                            | < 0.0003       | < 0.0003       | < 0.0000                | < 0.0003       |
| Co-58                            | < 0.0003       | < 0.0004       | < 0.0001                | < 0.0002       |
| Fe-59                            | < 0.0006       | < 0.0004       | < 0.0001                | < 0.0007       |
| Co-60                            | < 0.0003       | < 0.0003       | < 0.0001                | < 0.0004       |
| Zn-65                            | < 0.0006       | < 0.0006       | < 0.0001                | < 0.0006       |
| Nb-95                            | < 0.0004       | < 0.0004       | < 0.0001                | < 0.0004       |
| Zr-95                            | < 0.0005       | < 0.0005       | < 0.0001                | < 0.0006       |
| Ru-103                           | < 0.0002       | < 0.0003       | < 0.0001                | < 0.0004       |
| Ru-106                           | < 0.0025       | < 0.0024       | < 0.0004                | < 0.0028       |
| I-131                            | < 0.0012       | < 0.0007       | < 0.0016                | < 0.0018       |
| Cs-134                           | < 0.0003       | < 0.0003       | < 0.0001                | < 0.0004       |
| Cs-137                           | < 0.0003       | < 0.0004       | < 0.0000                | < 0.0004       |
| Ba-140                           | < 0.0017       | < 0.0019       | < 0.0014                | < 0.0029       |
| La-140                           | < 0.0012       | < 0.0006       | < 0.0006                | < 0.0013       |
| Ce-141                           | < 0.0004       | < 0.0004       | < 0.0001                | < 0.0005       |
| Ce-144                           | < 0.0014       | < 0.0014       | < 0.0002                | < 0.0013       |
| Site: PBK-18                     |                |                |                         |                |
| Be-7                             | 0.048 +- 0.004 | 0.063 +- 0.006 | 0.058 +- 0.007          | 0.038 +- 0.004 |
| Vn-54                            | < 0.0003       | < 0.0004       | < 0.0001                | < 0.0002       |
| Co-58                            | < 0.0003       | < 0.0004       | < 0.0001                | < 0.0003       |
| Fe-59                            | < 0.0004       | < 0.0008       | < 0.0002                | < 0.0006       |
| Co-60                            | < 0.0003       | < 0.0006       | < 0.0001                | < 0.0003       |
| Zn-65                            | < 0.0005       | < 0.0009       | < 0.0002                | < 0.0005       |
| Nb-95                            | < 0.0003       | < 0.0005       | < 0.0002                | < 0.0004       |
| Zr-95                            | < 0.0005       | < 0.0007       | < 0.0002                | < 0.0005       |
| Ru-103                           | < 0.0003       | < 0.0005       | < 0.0002                | < 0.0004       |
| Ru-106                           | < 0.0021       | < 0.0033       | < 0.0008                | < 0.0026       |
| I-131                            | < 0.0006       | < 0.0010       | < 0.0019                | < 0.0016       |
| Cs-134                           | < 0.0003       | < 0.0004       | < 0.0001                | < 0.0003       |
| Cs-137                           | < 0.0002       | < 0.0005       | < 0.0001                | < 0.0003       |
| Ba-140                           | < 0.0013       | < 0.0025       | < 0.0022                | < 0.002        |
| La-140                           | < 0.0005       | < 0.0007       | < 0.0008                | < 0.001        |
| Ce-141                           | < 0.0004       | < 0.0007       | < 0.0003                | < 0.0004       |
| Ce-144                           | < 0.0011       | < 0.0025       | < 0.0006                | < 0.001        |
| 20 177                           | V 0.0011       | · 0.0020       | · 0.0000                | < 0.0010       |

23

| Table 7 | Wisconsin DHS | TLD network for th | ne Point Beach – Ko | ewaunee environm | ental monitoring |
|---------|---------------|--------------------|---------------------|------------------|------------------|
|         | program.      |                    |                     |                  |                  |
|         |               | 1ct Quarter        | 2nd Quarter         | 3rd Quarter      | 4th Quarter      |

|                    | 1st Quarter | 2nd Quarter | 3rd Quarter | 4th Quarter |
|--------------------|-------------|-------------|-------------|-------------|
| Date Placed:       | 01/09/14    | 04/30/14    | 07/09/14    | 10/14/14    |
| Date Removed:      | 04/30/14    | 07/09/14    | 10/14/14    | 01/06/15    |
| Days in the Field: | 111         | 70          | 97          | 84          |

Individual quarterly date is reported as: mR / Standard Quarter + 2 sigma counting error.

| TLD sites located at the Point Beach ISFS | SESI | h | Reac | <b>Point</b> | at the | located | ) sites | TII |
|-------------------------------------------|------|---|------|--------------|--------|---------|---------|-----|
|-------------------------------------------|------|---|------|--------------|--------|---------|---------|-----|

| 1                         | 26.4 +- 1.9  | 26.2 +- 2.6  | 22.4 +- 1.6  | 30.5 +- 2.3  |
|---------------------------|--------------|--------------|--------------|--------------|
| 2                         | 54.8 +- 2.8  | 48.8 +- 3.6  | 45.1 +- 3.0  | 62.8 +- 2.9  |
| 3                         | 26.2 +- 1.3  | 23.2 +- 1.7  | 22.6 +- 1.7  | 28.2 +- 1.5  |
| 4                         | 19.6 +- 1.9  | 17.3 +- 1.1  | 17.4 +- 1.2  | 20.5 +- 0.7  |
| 5                         | 21.6 +- 0.6  | 13.5 +- 1.4  | 19.5 +- 0.5  | 19.6 +- 1.0  |
| 6                         | 39.0 +- 1.0  | 33.3 +- 2.4  | 35.4 +- 1.4  | 38.7 +- 2.0  |
| 7                         | 50.9 +- 2.1  | 51.2 +- 3.2  | 48.5 +- 2.1  | 59.2 +- 2.9  |
| 8                         | 26.9 +- 1.1  | 23.2 +- 2.2  | 25.2 +- 1.5  | 28.4 +- 2.1  |
| Quarterly average +- s.d. | 33.2 +- 13.5 | 29.6 +- 13.9 | 29.5 +- 12.0 | 36.0 +- 16.6 |

TLD sites, excluding sites 1-8, that are located 0 - 2 miles from either the Point Beach or the Kewaunee facility.

|                         | 9  | 14.2 +- 1.0 | 13.6 +- 1.2 | 16.3 +- 1.1 | 15.4 +- 0.9 |
|-------------------------|----|-------------|-------------|-------------|-------------|
|                         | 10 | 12.3 +- 0.6 | 12.2 +- 1.5 | 12.9 +- 0.6 | 17.9 +- 1.4 |
|                         | 11 | 11.1 +- 0.5 | 10.6 +- 1.4 | 12.1 +- 0.6 | 16.6 +- 0.7 |
|                         | 12 | 13.8 +- 0.9 | 13.2 +- 1.4 | 16.6 +- 0.9 | 16.6 +- 1.1 |
|                         | 13 | 10.4 +- 0.8 | ND          | 13.0 +- 0.8 | 14.2 +- 0.9 |
|                         | 14 | 15.9 +- 0.6 | 15.6 +- 1.4 | 16.4 +- 0.8 | 18.3 +- 1.1 |
|                         | 19 | 14.7 +- 0.4 | 15.0 +- 1.9 | 15.6 +- 1.0 | 17.3 +- 1.5 |
|                         | 20 | 12.1 +- 0.5 | 13.0 +- 1.2 | 14.1 +- 0.5 | 15.2 +- 0.8 |
|                         | 21 | 10.7 +- 0.5 | 13.3 +- 1.5 | 13.5 +- 0.5 | 15.5 +- 0.8 |
|                         | 22 | 14.8 +- 0.9 | 19.8 +- 1.0 | 16.4 +- 0.6 | 21.1 +- 0.8 |
| Quarterly average L. s. | d  | 40.0 . 4.0  | 440 . 00    | 447 . 47    | 400 . 00    |
| Quarterly average +- s. | u. | 13.0 +- 1.9 | 14.0 +- 2.6 | 14.7 +- 1.7 | 16.8 +- 2.0 |

TLD sites that are located 2 – 5 miles from either the Point Beach or the Kewaunee facility.

| 14.6 +- 0.7 | 11.4 +- 1.2                                                                                          | 15.0 +- 0.6                                                                                                                                                      | 18.7                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                           |
|-------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11.5 +- 1.1 | 10.6 +- 1.3                                                                                          | 10.6 +- 0.9                                                                                                                                                      | 12.5                                                                                                                                                                                                                                                                                                                                                                                          | 0.9                                                                                                                                                                                                                                                                                                                           |
| 12.3 +- 0.6 | 13.0 +- 1.3                                                                                          | 12.7 +- 0.5                                                                                                                                                      | 15.1                                                                                                                                                                                                                                                                                                                                                                                          | 8.0                                                                                                                                                                                                                                                                                                                           |
| 12.8 +- 0.3 | 20.4 +- 1.8                                                                                          | 14.5 +- 0.5                                                                                                                                                      | 21.7                                                                                                                                                                                                                                                                                                                                                                                          | 1.4                                                                                                                                                                                                                                                                                                                           |
| 14.0 +- 0.8 | 10.6 +- 1.3                                                                                          | 14.9 +- 0.7                                                                                                                                                      | 18.0                                                                                                                                                                                                                                                                                                                                                                                          | 0.7                                                                                                                                                                                                                                                                                                                           |
| 9.3 +- 0.6  | 11.5 +- 1.3                                                                                          | 9.8 +- 0.5                                                                                                                                                       | 13.5                                                                                                                                                                                                                                                                                                                                                                                          | 0.9                                                                                                                                                                                                                                                                                                                           |
| 12.2 +- 0.9 | 14.4 +- 1.4                                                                                          | 13.2 +- 0.6                                                                                                                                                      | 16.4                                                                                                                                                                                                                                                                                                                                                                                          | 0.9                                                                                                                                                                                                                                                                                                                           |
| 13.8 +- 0.8 | 10.8 +- 1.8                                                                                          | 13.9 +- 0.5                                                                                                                                                      | 13.2                                                                                                                                                                                                                                                                                                                                                                                          | 8.0                                                                                                                                                                                                                                                                                                                           |
|             |                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                               |
| 12.6 +- 1.7 | 12.8 +- 3.3                                                                                          | 13.1 +- 2.0                                                                                                                                                      | 16.1 +-                                                                                                                                                                                                                                                                                                                                                                                       | 3.2                                                                                                                                                                                                                                                                                                                           |
|             | 11.5 +- 1.1<br>12.3 +- 0.6<br>12.8 +- 0.3<br>14.0 +- 0.8<br>9.3 +- 0.6<br>12.2 +- 0.9<br>13.8 +- 0.8 | 11.5 + 1.1 $10.6 + 1.312.3 + 0.6$ $13.0 + 1.312.8 + 0.3$ $20.4 + 1.814.0 + 0.8$ $10.6 + 1.39.3 + 0.6$ $11.5 + 1.312.2 + 0.9$ $14.4 + 1.413.8 + 0.8$ $10.8 + 1.8$ | 11.5 +- 1.1       10.6 +- 1.3       10.6 +- 0.9         12.3 +- 0.6       13.0 +- 1.3       12.7 +- 0.5         12.8 +- 0.3       20.4 +- 1.8       14.5 +- 0.5         14.0 +- 0.8       10.6 +- 1.3       14.9 +- 0.7         9.3 +- 0.6       11.5 +- 1.3       9.8 +- 0.5         12.2 +- 0.9       14.4 +- 1.4       13.2 +- 0.6         13.8 +- 0.8       10.8 +- 1.8       13.9 +- 0.5 | 11.5 + 1.1 $10.6 + 1.3$ $10.6 + 0.9$ $12.5$ $12.3 + 0.6$ $13.0 + 1.3$ $12.7 + 0.5$ $15.1$ $12.8 + 0.3$ $20.4 + 1.8$ $14.5 + 0.5$ $21.7$ $14.0 + 0.8$ $10.6 + 1.3$ $14.9 + 0.7$ $18.0$ $9.3 + 0.6$ $11.5 + 1.3$ $9.8 + 0.5$ $13.5$ $12.2 + 0.9$ $14.4 + 1.4$ $13.2 + 0.6$ $16.4$ $13.8 + 0.8$ $10.8 + 1.8$ $13.9 + 0.5$ $13.2$ |

TLD sites that are located greater than 5 miles from either the Point Beach or the Kewaunee facility.

| 27                        | 9.7 +- 0.4  | 14.0 +- 1.9 | 9.1 +- 0.4  | 14.2 | 1.2    |
|---------------------------|-------------|-------------|-------------|------|--------|
| 28                        | ND          | 11.8 +- 1.9 | 13.0 +- 0.7 | 13.1 | 1.1    |
| 29                        | 11.9 +- 0.4 | 10.3 +- 1.5 | 11.4 +- 0.4 | 11.6 | 0.9    |
| 30                        | 12.6 +- 0.7 | 12.4 +- 1.8 | 12.8 +- 0.7 | 16.2 | 1.4    |
| 31                        | 11.8 +- 0.7 | 8.4 +- 1.4  | 11.8 +- 0.9 | 12.4 | 1.0    |
| Quarterly average +- s.d. | 11.5 +- 1.3 | 11.4 +- 2.1 | 11.6 +- 1.6 | 13.5 | +- 1.8 |

ND - No data; the TLD was lost in the field.

Table 8 Wisconsin DHS analysis results for precipitation samples collected for the Point Beach – Kewaunee environmental monitoring program.

Measurements in units of nCi/m2

monthly composite sample

| Collection | Inches | Gross beta   | Tritium |
|------------|--------|--------------|---------|
| 01/16/14   | 0.44   | 0.03 +- 0.01 | < 2.4   |
| 02/19/14   | 0.86   | 0.04 +- 0.02 | < 4.7   |
| 03/19/14   | 0.38   | 0.02 +- 0.01 | < 2.1   |
| 04/23/14   | 4.78   | 0.74 +- 0.13 | < 26.7  |
| 06/18/14   | 8.59   | < 0.24       | < 48.0  |
| 07/16/14   | 1.31   | < 0.04       | < 7.2   |
| 08/20/14   | 3.35   | 0.30 +- 0.08 | < 18.1  |
| 09/24/14   | 2.41   | 0.07 < 0.04  | < 13.0  |
| 10/23/14   | 4.04   | 0.15 +- 0.07 | < 21.7  |
| 11/18/14   | 1.37   | 0.14 +- 0.03 | < 7.3   |
| 12/12/14   | 1.26   | 0.05 +- 0.03 | < 6.7   |
| 01/16/14   | 0.44   | 0.03 +- 0.01 | < 2.4   |

Table 9 Wisconsin DHS analysis results for fish samples collected for the Point Beach – Kewaunee environmental monitoring program.

| Measurements in unit | s of pCi/kilogram (w | et)         |             |             |
|----------------------|----------------------|-------------|-------------|-------------|
| Collection date:     | 01/30/14             | 03/12/14    | 03/14/14    | 06/14/14    |
| Туре                 | * a                  | *b          | brown trout | brown trout |
| gamma isotopic       |                      |             |             |             |
| K-40                 | 2650 +- 470          | 3010 +- 490 | 1090 +- 190 | 3500 +- 600 |
| Mn-54                | < 8                  | < 6         | < 3         | < 7         |
| Co-58                | < 9                  | < 7         | < 6         | < 9         |
| Fe-59                | < 18                 | < 23        | < 20        | < 22        |
| Co-60                | < 9                  | < 7         | < 4         | < 13        |
| Zn-65                | < 18                 | < 13        | < 8         | < 23        |
| Nb-95                | < 8                  | < 14        | < 12        | < 11        |
| Zr-95                | < 13                 | < 15        | < 11        | < 17        |
| Cs-134               | < 6                  | < 5         | < 3         | < 7         |
| Cs-137               | 26 +- 6              | 43 +- 5     | 7 +- 2      | 30 +- 6     |
|                      |                      |             |             |             |
| Collection date:     | 07/01/14             | 09/01/14    |             |             |
| Туре                 | *c                   | *d          |             |             |
| gamma isotopic       |                      |             |             |             |
| K-40                 | 2680 +- 446          | 3360 +- 537 |             |             |
| Mn-54                | < 6                  | < 4         |             |             |
| Co-58                | < 8                  | < 7         |             |             |
| Fe-59                | < 28                 | < 23        |             |             |
| Co-60                | < 8                  | < 5         |             |             |
| Zn-65                | < 16                 | < 9         |             |             |
| Nb-95                | < 14                 | < 20        |             |             |

Radioisotopes other than those reported were not detected.

< 19

< 8

+- 8

Zr-95

Cs-134

Cs-137

< 13

< 4

18 +- 4

<sup>\*</sup>a - One sample from three separate samples of lake trout, small mouth bass and perch.

<sup>\*</sup>b - One sample from three separate samples of catfish, small mouth bass and perch.

<sup>\*</sup>c - One sample from five separate samples of Salmon, Brown Trout, Lake Trout, Burbot, Burbot

<sup>\*</sup>d - One Sample from Coho Salmon and Lake Trout

Table 10 Wisconsin DHS analysis results for shoreline sediment samples collected for the Point Beach – Kewaunee environmental monitoring program.

Measurements in units of pCi/kilogram (dry)

| Collection date: | 06/17/14     | 06/18/14     | 06/18/14     |
|------------------|--------------|--------------|--------------|
| Site:            | PBK-5        | PBK-10a      | PBK-29       |
| gross alpha      | < 3500       | < 3700       | < 3730       |
| gross beta       | 3500 +- 1000 | 2900 +- 1200 | 5150 +- 1090 |
| K-40             | 6700 +- 1200 | 4700 +- 800  | 6310 +- 1090 |
| Mn-54            | < 16         | < 18         | < 17         |
| Co-58            | < 19         | < 14         | < 16         |
| Fe-59            | < 43         | < 35         | < 46         |
| Co-60            | < 19         | < 19         | < 16         |
| Zn-65            | < 40         | < 27         | < 36         |
| Nb-95            | < 21         | < 20         | < 21         |
| Zr-95            | < 32         | < 24         | < 32         |
| Cs-134           | < 18         | < 16         | < 15         |
| Cs-137           | < 23         | < 21         | < 22         |
|                  |              |              |              |
|                  |              |              |              |

| Collection date: | 06/17/14     | 06/17/14     | 06/17/14     | 06/17/14     |
|------------------|--------------|--------------|--------------|--------------|
| Site:            | PBK-12a      | PBK-12b      | PBK-12c      | PBK-26       |
| gross alpha      | 7300 +- 3100 | < 3650       | 4410 +- 2660 | < 4070       |
| gross beta       | 4590 +- 994  | 3880 +- 1020 | 3890 +- 1170 | 3700 +- 1120 |
| K-40             | 4200 +- 800  | 5600 +- 1000 | 2430 +- 473  | 4730 +- 838  |
| Mn-54            | < 23         | < 19         | < 23         | < 15         |
| Co-58            | < 18         | < 18         | < 22         | < 16         |
| Fe-59            | < 42         | < 37         | < 41         | < 43         |
| Co-60            | < 22         | < 26         | < 27         | < 21         |
| Zn-65            | < 36         | < 39         | < 44         | < 35         |
| Nb-95            | < 24         | < 26         | < 40         | < 24         |
| Zr-95            | < 38         | < 36         | < 44         | < 30         |
| Cs-134           | < 17         | < 16         | < 21         | < 14         |
| Cs-137           | 23 +- 9      | 18 +- 9      | < 33         | < 23         |

Naturally occurring radioisotopes such as radium-226 ( $^{226}$ Ra), bismuth-214 ( $^{214}$ Bi), lead-214 ( $^{214}$ Pb), actinium-228 ( $^{228}$ Ac), bismuth-212 ( $^{212}$ Bi), lead-212 ( $^{212}$ Pb) from the naturally occurring uranium-238 ( $^{238}$ U) and thorium-232 ( $^{232}$ Th) decay series are commonly detected but have not been quantified or reported.

Table 11 Wisconsin DHS analysis results for surface water samples collected for the Point Beach – Kewaunee environmental monitoring program.

| PBK-9; | Point | Beach | meteoro | logical | tower |
|--------|-------|-------|---------|---------|-------|
|--------|-------|-------|---------|---------|-------|

\*a - Analysis is performed on a quarterly composite.

Radioisotopes other than those reported were not detected.

\*c - The detection limit of 0.5 pCi/L was not met

| Collection date:                                                                                                                                                                                                                   | January                                                                                                        | 02/13/14                                                                      | 03/19/14                                                                                       | 04/16/14                                                                                        | 05/14/14                                                                      | 06/12/14                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol<br>I-131<br>H-3 *a<br>Sr-89 *a<br>Sr-90 *a                                                                                                              |                                                                                                                | < 1.0<br>1.8 +- 0.9<br>< 0.6<br>< 1.2<br>*e                                   | 2.5 ± 1.6<br>5.0 ± 1.1<br>< 0.6<br>< 1.1<br>< 216<br>< 1.38<br>0.1 ± 0.1                       | < 1.4<br>2.0 ± 0.8<br>< 0.6<br>< 1.1<br>*e                                                      | 1.9 ± 1.3<br>< 1.8<br>< 0.7<br>< 1.7                                          | 2.1 ± 1.0<br>4.6 ± 1.2<br>< 0.6<br>< 1.1<br>*e<br>< 220<br>< 1.4<br>< 0.2                                                |
| gamma isotopic<br>Mn-54                                                                                                                                                                                                            |                                                                                                                | < 9                                                                           | < 10                                                                                           | < 6                                                                                             | < 10                                                                          | < 9                                                                                                                      |
| Co-58                                                                                                                                                                                                                              |                                                                                                                | < 8                                                                           | < 9                                                                                            | < 6                                                                                             | < 8                                                                           | < 9                                                                                                                      |
| Fe-59                                                                                                                                                                                                                              |                                                                                                                | < 16                                                                          | < 16                                                                                           | < 17                                                                                            | < 17                                                                          | < 16                                                                                                                     |
| Co-60                                                                                                                                                                                                                              |                                                                                                                | < 12                                                                          | < 12                                                                                           | < 6                                                                                             | < 14                                                                          | < 13                                                                                                                     |
| Zn-65                                                                                                                                                                                                                              |                                                                                                                | < 19                                                                          | < 20                                                                                           | < 13                                                                                            | < 18                                                                          | < 22                                                                                                                     |
| Nb-95                                                                                                                                                                                                                              |                                                                                                                | < 9                                                                           | < 9                                                                                            | < 6                                                                                             | < 10                                                                          | < 10                                                                                                                     |
| Zr-95                                                                                                                                                                                                                              |                                                                                                                | < 15                                                                          | < 17                                                                                           | < 14                                                                                            | < 16                                                                          | < 17                                                                                                                     |
| I-131                                                                                                                                                                                                                              |                                                                                                                | < 15                                                                          | < 13                                                                                           | < 8                                                                                             | < 12                                                                          | < 12                                                                                                                     |
| Cs-134                                                                                                                                                                                                                             |                                                                                                                | < 10                                                                          | < 11                                                                                           | < 7                                                                                             | < 10                                                                          | < 11                                                                                                                     |
| Cs-137                                                                                                                                                                                                                             |                                                                                                                | < 9                                                                           | < 13                                                                                           | < 8                                                                                             | < 12                                                                          | < 13                                                                                                                     |
| Ba-140                                                                                                                                                                                                                             |                                                                                                                | < 36<br>< 14                                                                  | < 39                                                                                           | < 23<br>< 13                                                                                    | < 39<br>< 12                                                                  | < 38<br>< 12                                                                                                             |
| La-140                                                                                                                                                                                                                             |                                                                                                                | < 14                                                                          | < 14                                                                                           | < 13                                                                                            | < 12                                                                          | < 12                                                                                                                     |
|                                                                                                                                                                                                                                    |                                                                                                                |                                                                               |                                                                                                |                                                                                                 |                                                                               |                                                                                                                          |
| Collection date:                                                                                                                                                                                                                   | 07/10/14                                                                                                       | 08/14/14                                                                      | 09/17/14                                                                                       | 10/26/04                                                                                        | 11/12/14                                                                      | 12/17/14                                                                                                                 |
| Collection date: gross alpha-sol                                                                                                                                                                                                   | 07/10/14 < 1.0                                                                                                 | 08/14/14 < 0.9                                                                | 09/17/14 < 0.8                                                                                 | 10/26/04 < 1.0                                                                                  | 11/12/14<br>< 0.9                                                             | 12/17/14<br>1.9 ± 1.2                                                                                                    |
|                                                                                                                                                                                                                                    |                                                                                                                |                                                                               |                                                                                                |                                                                                                 |                                                                               |                                                                                                                          |
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol                                                                                                                                                                             | < 1.0                                                                                                          | < 0.9                                                                         | < 0.8                                                                                          | < 1.0                                                                                           | < 0.9                                                                         | 1.9 ± 1.2                                                                                                                |
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol                                                                                                                                                         | < 1.0<br>1.4 ± 0.9<br>< 0.5<br>< 1.1                                                                           | < 0.9<br>1.5 ± 0.8                                                            | < 0.8<br>1.1 ± 0.7<br>< 0.6<br>< 1.2                                                           | < 1.0<br>1.2 ± 0.8                                                                              | < 0.9<br>2.0 ± 0.8<br>< 0.1<br>< 1.3                                          | 1.9 ± 1.2<br>2.2 ± 0.9                                                                                                   |
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol<br>I-131                                                                                                                                                | < 1.0<br>1.4 ± 0.9<br>< 0.5<br>< 1.1<br>*e                                                                     | < 0.9<br>1.5 ± 0.8<br>0.1 ± 0.5                                               | < 0.8<br>1.1 ± 0.7<br>< 0.6                                                                    | < 1.0<br>1.2 ± 0.8<br>< 0.9<br>< 1.3                                                            | < 0.9<br>2.0 ± 0.8<br>< 0.1                                                   | 1.9 ± 1.2<br>2.2 ± 0.9<br>< 0.7                                                                                          |
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol<br>I-131<br>H-3 *a                                                                                                                                      | < 1.0<br>1.4 ± 0.9<br>< 0.5<br>< 1.1<br>*e<br>< 214                                                            | < 0.9<br>1.5 ± 0.8<br>0.1 ± 0.5                                               | < 0.8<br>1.1 ± 0.7<br>< 0.6<br>< 1.2                                                           | < 1.0<br>1.2 ± 0.8<br>< 0.9<br>< 1.3                                                            | < 0.9<br>2.0 ± 0.8<br>< 0.1<br>< 1.3                                          | 1.9 ± 1.2<br>2.2 ± 0.9<br>< 0.7                                                                                          |
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol<br>I-131<br>H-3 *a<br>Sr-89 *a                                                                                                                          | < 1.0<br>1.4 ± 0.9<br>< 0.5<br>< 1.1<br>*e<br>< 214<br>< 0.66                                                  | < 0.9<br>1.5 ± 0.8<br>0.1 ± 0.5                                               | < 0.8<br>1.1 ± 0.7<br>< 0.6<br>< 1.2                                                           | < 1.0<br>1.2 ± 0.8<br>< 0.9<br>< 1.3<br>< 210<br>*b                                             | < 0.9<br>2.0 ± 0.8<br>< 0.1<br>< 1.3                                          | 1.9 ± 1.2<br>2.2 ± 0.9<br>< 0.7                                                                                          |
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol<br>I-131<br>H-3 *a<br>Sr-89 *a<br>Sr-90 *a                                                                                                              | < 1.0<br>1.4 ± 0.9<br>< 0.5<br>< 1.1<br>*e<br>< 214                                                            | < 0.9<br>1.5 ± 0.8<br>0.1 ± 0.5                                               | < 0.8<br>1.1 ± 0.7<br>< 0.6<br>< 1.2                                                           | < 1.0<br>1.2 ± 0.8<br>< 0.9<br>< 1.3<br>< 210                                                   | < 0.9<br>2.0 ± 0.8<br>< 0.1<br>< 1.3                                          | 1.9 ± 1.2<br>2.2 ± 0.9<br>< 0.7                                                                                          |
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol<br>I-131<br>H-3 *a<br>Sr-89 *a<br>Sr-90 *a<br>gamma isotopic                                                                                            | < 1.0 1.4 ± 0.9 < 0.5 < 1.1     *e < 214 < 0.66 < 0.26                                                         | < 0.9<br>1.5 ± 0.8<br>0.1 ± 0.5<br>< 1.1                                      | < 0.8 1.1 ± 0.7 < 0.6 < 1.2 *e                                                                 | < 1.0<br>1.2 ± 0.8<br>< 0.9<br>< 1.3<br>< 210<br>*b<br>*b                                       | < 0.9<br>2.0 ± 0.8<br>< 0.1<br>< 1.3<br>< 1.1 *c                              | 1.9 ± 1.2<br>2.2 ± 0.9<br>< 0.7<br>< 1.2                                                                                 |
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol<br>I-131<br>H-3 *a<br>Sr-89 *a<br>Sr-90 *a<br>gamma isotopic<br>Mn-54                                                                                   | < 1.0 1.4 ± 0.9 < 0.5 < 1.1     *e < 214 < 0.66 < 0.26 < 9                                                     | < 0.9<br>1.5 ± 0.8<br>0.1 ± 0.5<br>< 1.1                                      | < 0.8 1.1 ± 0.7 < 0.6 < 1.2 *e                                                                 | < 1.0 1.2 ± 0.8 < 0.9 < 1.3 < 210 *b *b < 8                                                     | < 0.9 2.0 ± 0.8 < 0.1 < 1.3 < 1.1 *c                                          | 1.9 ± 1.2<br>2.2 ± 0.9<br>< 0.7<br>< 1.2                                                                                 |
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol<br>I-131<br>H-3 *a<br>Sr-89 *a<br>Sr-90 *a<br>gamma isotopic<br>Mn-54<br>Co-58                                                                          | < 1.0 1.4 ± 0.9 < 0.5 < 1.1  *e < 214 < 0.66 < 0.26 < 9 < 8                                                    | < 0.9 1.5 ± 0.8 0.1 ± 0.5 < 1.1  < 7 < 6                                      | < 0.8 1.1 ± 0.7 < 0.6 < 1.2 *e  < 10 < 9                                                       | < 1.0 1.2 ± 0.8 < 0.9 < 1.3 < 210 *b *b < 8 < 7                                                 | < 0.9 2.0 ± 0.8 < 0.1 < 1.3 < 1.1 *c                                          | 1.9 ± 1.2<br>2.2 ± 0.9<br>< 0.7<br>< 1.2<br>< 10 *d<br>< 8                                                               |
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol<br>I-131<br>H-3 *a<br>Sr-89 *a<br>Sr-90 *a<br>gamma isotopic<br>Mn-54<br>Co-58<br>Fe-59                                                                 | < 1.0 1.4 ± 0.9 < 0.5 < 1.1  *e < 214 < 0.66 < 0.26  < 9 < 8 < 15                                              | < 0.9 1.5 ± 0.8 0.1 ± 0.5 < 1.1  < 7 < 6 < 11                                 | < 0.8 1.1 ± 0.7 < 0.6 < 1.2  *e  < 10 < 9 < 12                                                 | < 1.0 1.2 ± 0.8 < 0.9 < 1.3 < 210 *b *b < 8 < 7 < 19                                            | < 0.9 2.0 ± 0.8 < 0.1 < 1.3 < 1.1 *c  < 2 < 2 < 5                             | 1.9 ± 1.2<br>2.2 ± 0.9<br>< 0.7<br>< 1.2<br>< 10 *d<br>< 8<br>< 18                                                       |
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol<br>I-131<br>H-3 *a<br>Sr-89 *a<br>Sr-90 *a<br>gamma isotopic<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60                                                        | < 1.0 1.4 ± 0.9 < 0.5 < 1.1     *e < 214 < 0.66 < 0.26  < 9 < 8 < 15 < 8                                       | < 0.9 1.5 ± 0.8 0.1 ± 0.5 < 1.1  < 7 < 6 < 11 < 8                             | < 0.8 1.1 ± 0.7 < 0.6 < 1.2  *e  < 10 < 9 < 12 < 13                                            | < 1.0 1.2 ± 0.8 < 0.9 < 1.3  < 210     *b     *b  < 8 < 7 < 19 < 11                             | < 0.9 2.0 ± 0.8 < 0.1 < 1.3 < 1.1 *c  < 2 < 2 < 5 < 3                         | 1.9 ± 1.2<br>2.2 ± 0.9<br>< 0.7<br>< 1.2<br>< 10 *d<br>< 8<br>< 18<br>< 12                                               |
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol<br>I-131<br>H-3 *a<br>Sr-89 *a<br>Sr-90 *a<br>gamma isotopic<br>Mn-54<br>Co-58<br>Fe-59                                                                 | < 1.0 1.4 ± 0.9 < 0.5 < 1.1  *e < 214 < 0.66 < 0.26  < 9 < 8 < 15                                              | < 0.9 1.5 ± 0.8 0.1 ± 0.5 < 1.1  < 7 < 6 < 11                                 | < 0.8 1.1 ± 0.7 < 0.6 < 1.2  *e  < 10 < 9 < 12                                                 | < 1.0 1.2 ± 0.8 < 0.9 < 1.3 < 210 *b *b < 8 < 7 < 19                                            | < 0.9 2.0 ± 0.8 < 0.1 < 1.3 < 1.1 *c  < 2 < 2 < 5                             | 1.9 ± 1.2<br>2.2 ± 0.9<br>< 0.7<br>< 1.2<br>< 10 *d<br>< 8<br>< 18                                                       |
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol<br>I-131<br>H-3 *a<br>Sr-89 *a<br>Sr-90 *a<br>gamma isotopic<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95                                      | < 1.0  1.4 ± 0.9  < 0.5  < 1.1  *e  < 214  < 0.66  < 0.26  < 9  < 8  < 15  < 8  < 13  < 9                      | < 0.9 1.5 ± 0.8 0.1 ± 0.5 < 1.1  < 7 < 6 < 11 < 8 < 18 < 8                    | < 0.8  1.1 ± 0.7  < 0.6  < 1.2  *e  < 10  < 9  < 12  < 13  < 23  < 12                          | < 1.0 1.2 ± 0.8 < 0.9 < 1.3  < 210     *b     *b  < 8 < 7 < 19 < 11 < 16 < 8                    | < 0.9 2.0 ± 0.8 < 0.1 < 1.3 < 1.1 *c  < 2 < 2 < 2 < 5 < 3 < 6                 | 1.9 ± 1.2<br>2.2 ± 0.9<br>< 0.7<br>< 1.2<br>< 10 *d<br>< 8<br>< 18<br>< 12<br>< 17<br>< 9                                |
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol<br>I-131<br>H-3 *a<br>Sr-89 *a<br>Sr-90 *a<br>gamma isotopic<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65                                               | < 1.0  1.4 ± 0.9  < 0.5  < 1.1  *e  < 214  < 0.66  < 0.26  < 9  < 8  < 15  < 8  < 13                           | < 0.9 1.5 ± 0.8 0.1 ± 0.5 < 1.1  < 7 < 6 < 11 < 8 < 18                        | < 0.8  1.1 ± 0.7  < 0.6  < 1.2  *e  < 10  < 9  < 12  < 13  < 23                                | < 1.0 1.2 ± 0.8 < 0.9 < 1.3  < 210     *b     *b  < 8 < 7 < 19 < 11 < 16                        | < 0.9 2.0 ± 0.8 < 0.1 < 1.3 < 1.1 *c  < 2 < 2 < 5 < 3 < 6 < 3                 | 1.9 ± 1.2<br>2.2 ± 0.9<br>< 0.7<br>< 1.2<br>< 10 *d<br>< 8<br>< 18<br>< 12<br>< 17                                       |
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol<br>I-131<br>H-3 *a<br>Sr-89 *a<br>Sr-90 *a<br>gamma isotopic<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95<br>Zr-95                             | < 1.0  1.4 ± 0.9  < 0.5  < 1.1  *e  < 214  < 0.66  < 0.26  < 9  < 8  < 15  < 8  < 13  < 9  < 12                | < 0.9 1.5 ± 0.8 0.1 ± 0.5 < 1.1  < 7 < 6 < 11 < 8 < 18 < 8 < 14               | < 0.8  1.1 ± 0.7  < 0.6  < 1.2  *e  < 10  < 9  < 12  < 13  < 23  < 12  < 19                    | < 1.0 1.2 ± 0.8 < 0.9 < 1.3  < 210     *b     *b  < 8 < 7 < 19 < 11 < 16 < 8 < 12               | < 0.9 2.0 ± 0.8 < 0.1 < 1.3 < 1.1 *c  < 2 < 2 < 5 < 3 < 6 < 3 < 4             | 1.9 ± 1.2<br>2.2 ± 0.9<br>< 0.7<br>< 1.2<br>< 10 *d<br>< 8<br>< 18<br>< 12<br>< 17<br>< 9<br>< 18                        |
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol<br>I-131<br>H-3 *a<br>Sr-89 *a<br>Sr-90 *a<br>gamma isotopic<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95<br>Zr-95<br>I-131                    | < 1.0  1.4 ± 0.9  < 0.5  < 1.1  *e  < 214  < 0.66  < 0.26  < 9  < 8  < 15  < 8  < 13  < 9  < 12  < 8           | < 0.9 1.5 ± 0.8 0.1 ± 0.5 < 1.1  < 7 < 6 < 11 < 8 < 18 < 18 < 14 < 12         | < 0.8  1.1 ± 0.7  < 0.6  < 1.2  *e  < 10  < 9  < 12  < 13  < 23  < 12  < 19  < 14              | < 1.0 1.2 ± 0.8 < 0.9 < 1.3  < 210     *b     *b  < 8 < 7 < 19 < 11 < 16 < 8 < 12 < 11          | < 0.9 2.0 ± 0.8 < 0.1 < 1.3 < 1.1 *c  < 2 < 2 < 5 < 3 < 6 < 3 < 4 < 3         | 1.9 ± 1.2<br>2.2 ± 0.9<br>< 0.7<br>< 1.2<br>< 10 *d<br>< 8<br>< 18<br>< 12<br>< 17<br>< 9<br>< 18<br>< 15                |
| gross alpha-sol<br>gross beta-sol<br>gross beta-insol<br>gross beta-insol<br>I-131<br>H-3 *a<br>Sr-89 *a<br>Sr-90 *a<br>gamma isotopic<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95<br>Zr-95<br>I-131<br>Cs-134           | < 1.0  1.4 ± 0.9  < 0.5  < 1.1  *e  < 214  < 0.66  < 0.26  < 9  < 8  < 15  < 8  < 13  < 9  < 12  < 8  < 9      | < 0.9 1.5 ± 0.8 0.1 ± 0.5 < 1.1  < 7 < 6 < 11 < 8 < 18 < 18 < 14 < 12 < 7     | < 0.8  1.1 ± 0.7  < 0.6  < 1.2  *e  < 10  < 9  < 12  < 13  < 23  < 12  < 19  < 14  < 12        | < 1.0 1.2 ± 0.8 < 0.9 < 1.3  < 210     *b     *b  < 8 < 7 < 19 < 11 < 16 < 8 < 12 < 11 < 8      | < 0.9 2.0 ± 0.8 < 0.1 < 1.3 < 1.1 *c  < 2 < 2 < 5 < 3 < 6 < 3 < 4 < 3 < 3     | 1.9 ± 1.2<br>2.2 ± 0.9<br>< 0.7<br>< 1.2<br>< 10 *d<br>< 8<br>< 18<br>< 12<br>< 17<br>< 9<br>< 18<br>< 15<br>< 9         |
| gross alpha-sol<br>gross beta-sol<br>gross beta-insol<br>gross beta-insol<br>I-131<br>H-3 *a<br>Sr-89 *a<br>Sr-90 *a<br>gamma isotopic<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95<br>Zr-95<br>I-131<br>Cs-134<br>Cs-137 | < 1.0  1.4 ± 0.9  < 0.5  < 1.1  *e  < 214  < 0.66  < 0.26  < 9  < 8  < 15  < 8  < 13  < 9  < 12  < 8  < 9  < 8 | < 0.9 1.5 ± 0.8 0.1 ± 0.5 < 1.1  < 7 < 6 < 11 < 8 < 18 < 18 < 14 < 12 < 7 < 8 | < 0.8  1.1 ± 0.7  < 0.6  < 1.2  *e   < 10  < 9  < 12  < 13  < 23  < 12  < 19  < 14  < 12  < 14 | < 1.0  1.2 ± 0.8 < 0.9 < 1.3  < 210     *b     *b  < 8 < 7 < 19 < 11 < 16 < 8 < 12 < 11 < 8 < 8 | < 0.9 2.0 ± 0.8 < 0.1 < 1.3 < 1.1 *c  < 2 < 2 < 5 < 3 < 6 < 3 < 4 < 3 < 3 < 3 | 1.9 ± 1.2<br>2.2 ± 0.9<br>< 0.7<br>< 1.2<br>< 10 *d<br>< 8<br>< 18<br>< 12<br>< 17<br>< 9<br>< 18<br>< 15<br>< 9<br>< 11 |

28

\*b - There was a laboratory quality issue with the sample

\*e - Laboratory Error in analysis, conducted 6 time a year

\*d - The detection limit was not met

Table 11. Wisconsin DHS analysis results for surface water samples collected for the Point Beach – Kewaunee environmental monitoring program, continued.

| PBK-12a ( | (K-001D); | Kewaunee | effluent | channel |
|-----------|-----------|----------|----------|---------|
|-----------|-----------|----------|----------|---------|

| Collection date:  | 01/02/14            | 02/03/14  | 03/03/14      | 04/01/14      | 05/01/14                  | 06/02/14          |
|-------------------|---------------------|-----------|---------------|---------------|---------------------------|-------------------|
| gross alpha-sol   | < 0.8               | < 1.0     | < 1.0         | < 1.5         | < 1.0                     | < 0.9             |
| gross beta-sol    | < 1.0               | 1.5 ± 0.9 | 2.7 ± 1.0     | $2.3 \pm 0.9$ | < 1.7                     | 3.0 ± 1.0         |
| gross alpha-insol | < 0.5               | < 0.6     | < 0.6         | < 0.6         | < 0.6                     | < 0.5             |
| gross beta-insol  | < 1.0               | < 1.1     | < 1.0         | < 1.1         | < 1.0                     | < 1.1             |
| I-131             |                     | < 1.1*b   |               | *e            |                           | *e                |
| H-3 *             |                     |           | < 218         |               |                           | < 220             |
| Sr-89 *           |                     |           | < 3.2         |               |                           | < 1.8             |
| Sr-90 *           |                     |           | 0.3 +- 0.1    |               |                           | 0.3 ± 0.2         |
| gamma isotopic    |                     |           |               |               |                           |                   |
| Mn-54             | < 7                 | < 8       |               | < 10          | < 7                       | < 9               |
| Co-58             | < 6                 | < 4       |               | < 9           | < 6                       | < 8               |
| Fe-59             | < 13                | < 13      |               | < 18          | < 12                      | < 12              |
| Co-60             | < 9                 | < 10      |               | < 13          | < 7                       | < 7               |
| Zn-65             | < 16                | < 14      |               | < 21          | < 14                      | < 24              |
| Nb-95             | < 7                 | < 7       |               | < 11          | < 8                       | < 10              |
| Zr-95             | < 12                | < 12      |               | < 15          | < 11                      | < 12              |
| I-131             | < 10                | < 9       |               | < 11          | < 13                      | < 12              |
| Cs-134            | < 7                 | < 9       |               | < 10          | < 8                       | < 7               |
| Cs-137            | < 9                 | < 7       |               | < 8           | < 8                       | < 7               |
|                   |                     |           |               |               |                           |                   |
| Ba-140            |                     |           |               |               | < 41                      | < 38              |
| La-140            | < 11                | < 12      |               | < 12          | < 14                      | < 14              |
| Collection date:  | 07/01/14            | 08/04/14  | 09/02/14      | 10/01/14      | 11/03/14                  | 12/01/14          |
| gross alpha-sol   | < 0.9               | < 0.9     | < 0.9         | < 0.9         | < 0.5                     | < 1.1             |
| gross beta-sol    | 1.4 ± 0.9           | < 1.1     | $2.3 \pm 0.8$ | < 1.3         | < 0.9                     | 1.3 ± 0.8         |
| gross alpha-insol | < 0.6               | < 0.6     | < 0.6         | < 0.5         | < 0.8                     | < 0.5             |
| gross beta-insol  | < 1.1               | < 1.3     | < 1.3         | < 1.3         | < 8.4                     | < 1.2             |
| I-131             |                     |           |               | < 0.13        | < 2.4 *b                  | < 0.27 * <b>b</b> |
| H-3 *             | < 215               |           |               | < 211         | С                         |                   |
| Sr-89 *           | < 0.57              |           |               | b             | b                         |                   |
| Sr-90 *           | 0.37 ± 0.15         |           |               | b             | b                         |                   |
| gamma isotopic    |                     |           |               |               |                           |                   |
| Mn-54             | < 9                 | < 9       | < 9           | < 6           | < 8                       | < 8               |
| Co-58             | < 9                 | < 8       | < 7           | < 6           | < 8                       | < 7               |
| Fe-59             | < 19                | < 17      | < 16          | < 12          | < 20                      | < 17              |
| Co-60             | < 10                | < 11      | < 11          | < 6           | < 10                      | < 10              |
| Zn-65             | < 21                | < 17      | < 16          | < 11          | < 25                      | < 18              |
| Nb-95             | < 9                 | < 9       | < 9           | < 6           | < 9                       | < 8               |
| Zr-95             | < 13                | < 17      | < 16          | < 11          | < 12                      | < 15              |
| I-131             | < 13                | < 14      | < 16 *c       | < 13          | < 15                      | < 10              |
| Cs-134            | < 8                 | < 10      | < 9           | < 6           | < 9                       | < 9               |
| Cs-137            | < 10                | < 13      | < 12          | < 6           | < 8                       | < 9               |
| Ba-140            | < 41                | < 43      | < 39          | < 34          | < 36                      | < 38              |
| La-140            | < 10                | < 15      | < 13          | < 12          | < 13                      | < 14              |
| La 140            | rmed on a questorly |           |               |               | colity is a very with the |                   |

<sup>\*</sup>a - Analysis is performed on a quarterly composite.

<sup>\*</sup>b - There was a laboratory quality issue with the sample

<sup>\*</sup>c - The detection limit of 0.5 pCi/L was not met

<sup>\*</sup>d - The detection limit was not met

Radioisotopes other than those reported were not detected.

<sup>\*</sup>e - Laboratory Error in analysis, conducted 6 time a year

Table 11. Wisconsin DHS analysis results for surface water samples collected for the Point Beach – Kewaunee environmental monitoring program, continued.

PBK-17; Green Bay Water Utility - Rostok

| Collection date:                                                                                                                     | 01/13/14                                                                                                 | 02/03/14                                                  | 03/03/14                                                                     | 04/07/14                                          | 05/05/14                                         | 06/02/14                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------|
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol<br>I-131<br>H-3 *<br>Sr-89 *<br>Sr-90 *<br>gamma isotopic | < 0.9<br>1.5 ± 0.8<br>< 0.6<br>< 1.1                                                                     | 1.0 ± 0.8<br>1.7 ± 0.8<br>< 0.6<br>< 1.3<br>< 1.6*c       | 1.3 ± 0.8<br>2.4 ± 0.8<br>< 0.6<br>< 1.3<br>< 0.1<br>< 220<br>< 2.6<br>< 0.2 | < 0.8<br>1.2 ± 0.7<br>< 0.6<br>< 1.2              | < 1.0<br>< 2.0<br>< 0.6<br>< 0.8<br>*e           | 1.6 ± 0.9<br>1.5 ± 0.8<br>< 0.6<br>< 1.1<br>< 220<br>< 1.4<br>0.3 ± 0.2 |
| Mn-54 Co-58 Fe-59 Co-60 Zn-65 Nb-95 Zr-95 I-131 Cs-134 Cs-137 Ba-140                                                                 | < 9 < 8 < 23 < 12 < 25 < 10 < 16 < 11 < 11 < 6 < 29                                                      | < 9 < 8 < 6 < 3 < 12 < 9 < 15 < 9 < 8 < 10 < 27           | < 10 < 11 < 19 < 10 < 17 < 11 < 19 < 10 < 17 < 11 < 38                       | < 10 < 12 < 22 < 12 < 26 < 11 < 16 < 11 < 17 < 50 | < 7 < 6 < 10 < 8 < 14 < 8 < 11 < 7 < 10 < 8 < 27 | < 9 < 9 < 23 < 13 < 26 < 9 < 3 < 12 < 11 < 9 < 27                       |
| La-140                                                                                                                               | < 14                                                                                                     | < 15                                                      | < 13                                                                         | < 12                                              | < 8                                              | < 11                                                                    |
| Collection date:                                                                                                                     | 07/07/14                                                                                                 | 08/04/14                                                  | 09/08/14                                                                     | 10/07/14                                          | 11/03/14                                         | 12/01/14                                                                |
| gross alpha-sol<br>gross beta-sol<br>gross alpha-insol<br>gross beta-insol<br>I-131<br>H-3 *<br>Sr-89 *<br>Sr-90 *                   | < 0.9 1.18 ± 0.8 < 0.5 < 1.1 < 214 < 0.6 < 0.27                                                          | 0.8 ± 0.7<br>1.5 ± 0.8<br>0.6 ± 0.5<br>< 1.1              | < 1.0<br>2.1 ± 0.9<br>< 0.6<br>< 1.1                                         | < 1.0 < 1.2 < 0.7 < 1.1 < 0.15 < 211 < b < b      | < 0.6<br>< 1.2<br>< 1.3<br>< 1.3<br>< 3.22 *b    | < 0.8<br>1.7 ± 0.9<br>< 0.5<br>< 1.1<br>< 0.35                          |
| gamma isotopic<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95<br>Zr-95<br>I-131<br>Cs-134<br>Cs-137<br>Ba-140<br>La-140       | <pre>&lt; 9 &lt; 12 &lt; 22 &lt; 12 &lt; 26 &lt; 11 &lt; 1 &lt; 13 &lt; 11 &lt; 11 &lt; 37 &lt; 11</pre> | < 10 < 8 < 17 < 12 < 18 < 9 < 14 < 12 < 10 < 13 < 38 < 12 | < 6 < 6 < 12 < 7 < 13 < 6 < 10 < 7 < 7 < 7 < 7                               | < 6 < 6 < 12 < 5 < 10 < 5 < 10 < 5 < 10 < 7       | < 10 < 10 < 21 < 13 < 22 < 10 < 17 < 10 < 40 < 4 | < 9 < 7 < 14 < 11 < 16 < 8 < 14 < 9 < 8 < 10 < 30 < 9                   |
| *a - Analysis is perfo                                                                                                               |                                                                                                          | · ·                                                       |                                                                              | was a laboratory qu                               | •                                                | sample                                                                  |
| *c - The detection lin                                                                                                               | •                                                                                                        |                                                           |                                                                              | etection limit was no                             |                                                  |                                                                         |
| Radioisotopes other                                                                                                                  | than those reported                                                                                      | were not detected.                                        | *e – Labo                                                                    | ratory Error in analys                            | is, conducted 6 time                             | e a year                                                                |

Table 11. Wisconsin DHS analysis results for surface water samples collected for the Point Beach – Kewaunee environmental monitoring program, continued.

|                        | PBK-5                | PBK-29     | PBK-5                                    | PBK-29            |
|------------------------|----------------------|------------|------------------------------------------|-------------------|
| Collection date:       | 06/17/14             | 06/18/14   | 10/29/14                                 | 10/29/14          |
| gross alpha-sol        | 1.8 +- 0.9           | 1.4 +- 0.9 | < 1.1                                    | < 1.14            |
| gross beta-sol         | 1.8 +- 0.8           | 2.0 +- 0.8 | 1.3 +- 1.2                               | 2.2 +- 0.76       |
| gross alpha-insol      | < 0.6                | < 0.8      | < 0.7                                    | < 0.66            |
| gross beta-insol       | < 1.1                | < 1.2      | < 1.2                                    | < 1.58            |
| H-3                    | < 220                | < 217      | < 210                                    | < 210             |
| Sr-89                  | < 0.4                | < 0.4      | b                                        | b                 |
| Sr-90                  | < 0.2                | < 0.2      | b                                        | b                 |
| gamma isotopic         |                      |            |                                          |                   |
| Mn-54                  | < 6                  | < 8.8      | < 10                                     | < 8.34            |
| Co-58                  | < 10                 | < 8.3      | < 11                                     | < 7.25            |
| Fe-59                  | < 13                 | < 16.3     | < 18                                     | < 17              |
| Co-60                  | < 10                 | < 9.6      | < 13                                     | < 11.9            |
| Zn-65                  | < 24                 | < 20.5     | < 20                                     | < 21              |
| Nb-95                  | < 10                 | < 7.9      | < 11                                     | < 7.47            |
| Zr-95                  | < 14                 | < 13.7     | < 19                                     | < 12.3            |
| I-131                  | < 8                  | < 11.8     | < 10                                     | < 7.41            |
| Cs-134                 | < 9                  | < 7.9      | < 11                                     | < 8.81            |
| Cs-137                 | < 5                  | < 7.5      | < 10                                     | < 7.96            |
| Ba-140                 | < 32                 | < 39.1     | < 35                                     | < 31.3            |
| La-140                 | < 14                 | < 14.2     | < 13                                     | < 12.4            |
| *a - Analysis is perfo | rmed on a quarterly  | composite. | *b - There was a laboratory quality issu | e with the sample |
| *c - The detection lim | nit of 0.5 pCi/L was | not met    | *d - The detection limit was not met     | •                 |

Radioisotopes other than those reported were not detected.

Table 12 Wisconsin DHS analysis results for well water samples collected for the Point Beach – Kewaunee environmental monitoring program.

| Measurements in | units of nCi/liter |
|-----------------|--------------------|

|                     | PBK-3              | PBK-10      | PBK-11     | PBK-12d N  | PBK-12d S  |
|---------------------|--------------------|-------------|------------|------------|------------|
| Collection date:    | 07/17/14           | 04/16/14    | 06/17/14   | 06/17/14   | 06/17/14   |
| gross alpha         | < 0.9              | < 2.5       | 1.7 +- 1.2 | 4.3 +- 1.7 | 3.0 +- 1.7 |
| gross beta          | < 0.9              | 2.5 +- 1.5  | < 1.0      | 1.7 +- 0.9 | 2.6 +- 0.9 |
| H-3                 | < 220              | < 220       | < 220      | < 220      | < 220      |
|                     | PBK-3              | PBK-10      | PBK-11     | PBK-12d N  | PBK-12d S  |
| Collection date:    | 10/29/14           | 10/15/14    | 10/29/14   | 10/28/14   | 10/28/14   |
| gross alpha         | < 1.8              | 3.36 +- 1.7 | < 1.6      | 3.4 +- 1.7 | 5.1 +- 1.8 |
| gross beta          | < 1.1              | < 1.38      | < 1.1      | 2.0 +- 1.0 | 1.5 +- 0.9 |
| H-3                 | < 210              | < 210       | < 210      | < 210      | < 210      |
| NS – A sample was u | nable to be colled | cted.       |            |            |            |

Table 13 Wisconsin DHS analysis results for milk samples collected for the Point Beach – Kewaunee environmental monitoring program.

| <b>PBK-28</b> | (E-21); | Strutz fa | rm |
|---------------|---------|-----------|----|
|---------------|---------|-----------|----|

| Collection date:                                                                                                           | 01/08/14                                                              | 02/12/14                                                               | 03/12/14                                                               | 04/09/14                                                            | 05/14/14                                                                                                                                                                        | 06/11/14                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I-131                                                                                                                      |                                                                       | < 0.7 *c                                                               |                                                                        | *e                                                                  |                                                                                                                                                                                 | *e                                                                                                                                                                                       |
| Sr-90                                                                                                                      | < 0.4                                                                 | 0.4 +- 0.2                                                             | < 0.3                                                                  | 0.3 +- 0.2                                                          | < 0.3                                                                                                                                                                           | 0.4 +- 0.2                                                                                                                                                                               |
| gamma isotopic                                                                                                             |                                                                       |                                                                        |                                                                        |                                                                     |                                                                                                                                                                                 |                                                                                                                                                                                          |
| K-40                                                                                                                       | 1440 +- 290                                                           | 1410 +- 270                                                            | 1340 +- 284                                                            | 1270 +- 310                                                         | 1360 +- 330                                                                                                                                                                     | 1580 +- 300                                                                                                                                                                              |
| Mn-54                                                                                                                      | < 10                                                                  | < 7                                                                    | < 11                                                                   | < 13                                                                | < 11                                                                                                                                                                            | < 10                                                                                                                                                                                     |
| Co-58                                                                                                                      | < 10                                                                  | < 7                                                                    | < 9                                                                    | < 9                                                                 | < 9                                                                                                                                                                             | < 9                                                                                                                                                                                      |
| Fe-59                                                                                                                      | < 21                                                                  | < 16                                                                   | < 20                                                                   | < 25                                                                | < 26                                                                                                                                                                            | < 20                                                                                                                                                                                     |
| Co-60                                                                                                                      | < 14                                                                  | < 7                                                                    | < 10                                                                   | < 14                                                                | < 13                                                                                                                                                                            | < 15                                                                                                                                                                                     |
| Zn-65                                                                                                                      | < 23                                                                  | < 15                                                                   | < 24                                                                   | < 30                                                                | < 26                                                                                                                                                                            | < 25                                                                                                                                                                                     |
| Nb-95                                                                                                                      | < 9                                                                   | < 6                                                                    | < 12                                                                   | < 11                                                                | < 12                                                                                                                                                                            | < 11                                                                                                                                                                                     |
| Zr-95                                                                                                                      | < 18                                                                  | < 12                                                                   | < 15                                                                   | < 18                                                                | < 18                                                                                                                                                                            | < 18                                                                                                                                                                                     |
| I-131                                                                                                                      | < 12                                                                  | < 11                                                                   | < 15                                                                   | < 11                                                                | < 13                                                                                                                                                                            | < 11                                                                                                                                                                                     |
| Cs-134                                                                                                                     | < 10                                                                  | < 6                                                                    | < 7                                                                    | < 8                                                                 | < 12                                                                                                                                                                            | < 10                                                                                                                                                                                     |
| Cs-137                                                                                                                     | < 13                                                                  | < 7                                                                    | < 6                                                                    | < 9                                                                 | < 8                                                                                                                                                                             | < 14                                                                                                                                                                                     |
| Ba-140                                                                                                                     | < 31                                                                  | < 30                                                                   | < 39                                                                   | < 43                                                                | < 31                                                                                                                                                                            | < 37                                                                                                                                                                                     |
| La-140                                                                                                                     | < 10                                                                  | < 10                                                                   | < 12                                                                   | < 12                                                                | < 4                                                                                                                                                                             | < 11                                                                                                                                                                                     |
|                                                                                                                            |                                                                       |                                                                        |                                                                        |                                                                     |                                                                                                                                                                                 |                                                                                                                                                                                          |
| Collection date:                                                                                                           | 07/09/14                                                              | 08/13/14                                                               | 09/10/14                                                               | 10/08/14                                                            | 11/12/14                                                                                                                                                                        | 12/10/14 *d                                                                                                                                                                              |
| Collection date:                                                                                                           | 07/09/14                                                              | 08/13/14                                                               | 09/10/14                                                               |                                                                     |                                                                                                                                                                                 |                                                                                                                                                                                          |
|                                                                                                                            | 07/09/14 < 0.3*b                                                      | 08/13/14                                                               |                                                                        | 10/08/14 < 0.2 < 0.5                                                | 11/12/14<br>< 3.14 *c<br>*e                                                                                                                                                     | 12/10/14 *d<br>< 0.3<br>*e                                                                                                                                                               |
| I-131                                                                                                                      |                                                                       |                                                                        | 09/10/14<br>< 0.7 *b                                                   | < 0.2                                                               | < 3.14 *c                                                                                                                                                                       | < 0.3                                                                                                                                                                                    |
| I-131<br>Sr-90                                                                                                             |                                                                       |                                                                        |                                                                        | < 0.2                                                               | < 3.14 *c                                                                                                                                                                       | < 0.3                                                                                                                                                                                    |
| I-131<br>Sr-90<br>gamma isotopic                                                                                           | < 0.3*b                                                               | 0.3 +- 0.2                                                             | < 0.7 *b                                                               | < 0.2<br>< 0.5                                                      | < 3.14 *c<br>*e                                                                                                                                                                 | < 0.3<br>*e                                                                                                                                                                              |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40                                                                                   | < 0.3*b                                                               | 0.3 +- 0.2<br>1350 +- 253                                              | < 0.7 *b                                                               | < 0.2<br>< 0.5                                                      | < 3.14 *c<br>*e<br>1350 +- 275                                                                                                                                                  | < 0.3<br>*e<br>1250 +- 236                                                                                                                                                               |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40<br>Mn-54                                                                          | < 0.3*b  1340 +- 321  < 11                                            | 0.3 +- 0.2<br>1350 +- 253<br>< 8                                       | < 0.7 *b  1480 +- 280  < 11                                            | < 0.2<br>< 0.5<br>1470 +- 265<br>< 6                                | < 3.14 *c<br>*e<br>1350 +- 275<br>< 8                                                                                                                                           | < 0.3<br>*e<br>1250 +- 236<br>< 8                                                                                                                                                        |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40<br>Mn-54<br>Co-58                                                                 | < 0.3*b  1340 +- 321  < 11  < 9                                       | 0.3 +- 0.2<br>1350 +- 253<br>< 8<br>< 8                                | < 0.7 *b  1480 +- 280 < 11 < 10                                        | < 0.2<br>< 0.5<br>1470 +- 265<br>< 6<br>< 5                         | < 3.14 *c<br>*e<br>1350 +- 275<br>< 8<br>< 8                                                                                                                                    | < 0.3<br>*e<br>1250 +- 236<br>< 8<br>< 7                                                                                                                                                 |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59                                                        | < 0.3*b  1340 +- 321  < 11  < 9  < 18                                 | 0.3 +- 0.2<br>1350 +- 253<br>< 8<br>< 8<br>< 18                        | < 0.7 *b  1480 +- 280 < 11 < 10 < 20                                   | < 0.2<br>< 0.5<br>1470 +- 265<br>< 6<br>< 5<br>< 12                 | < 3.14 *c     *e  1350 +- 275     < 8     < 8     < 17                                                                                                                          | < 0.3 *e  1250 +- 236 < 8 < 7 < 12                                                                                                                                                       |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60                                               | < 0.3*b  1340 +- 321  < 11  < 9  < 18  < 14                           | 0.3 +- 0.2<br>1350 +- 253<br>< 8<br>< 8<br>< 18<br>< 11                | < 0.7 *b  1480 +- 280 < 11 < 10 < 20 < 15                              | < 0.2<br>< 0.5<br>1470 +- 265<br>< 6<br>< 5<br>< 12<br>< 7          | < 3.14 *c     *e  1350 +- 275     < 8     < 8     < 17     < 9                                                                                                                  | < 0.3<br>*e<br>1250 +- 236<br>< 8<br>< 7<br>< 12<br>< 9                                                                                                                                  |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65                                      | < 0.3*b  1340 +- 321 < 11 < 9 < 18 < 14 < 27                          | 0.3 +- 0.2<br>1350 +- 253<br>< 8<br>< 8<br>< 18<br>< 11<br>< 17        | < 0.7 *b  1480 +- 280 < 11 < 10 < 20 < 15 < 20                         | < 0.2 < 0.5  1470 +- 265 < 6 < 5 < 12 < 7 < 14                      | < 3.14 *c     *e  1350 +- 275     < 8     < 8     < 17     < 9     < 21                                                                                                         | < 0.3     *e  1250 +- 236     < 8     < 7     < 12     < 9     < 16                                                                                                                      |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95                             | < 0.3*b  1340 +- 321 < 11 < 9 < 18 < 14 < 27 < 13                     | 0.3 +- 0.2<br>1350 +- 253<br>< 8<br>< 8<br>< 18<br>< 11<br>< 17<br>< 9 | < 0.7 *b  1480 +- 280 < 11 < 10 < 20 < 15 < 20 < 8                     | < 0.2 < 0.5  1470 +- 265 < 6 < 5 < 12 < 7 < 14 < 7                  | < 3.14 *c     *e  1350 +- 275     < 8     < 8     < 17     < 9     < 21     < 9                                                                                                 | < 0.3 *e  1250 +- 236 < 8 < 7 < 12 < 9 < 16 < 8                                                                                                                                          |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95<br>Zr-95                    | < 0.3*b  1340 +- 321 < 11 < 9 < 18 < 14 < 27 < 13 < 17                | 0.3 +- 0.2  1350 +- 253                                                | < 0.7 *b  1480 +- 280 < 11 < 10 < 20 < 15 < 20 < 8 < 18                | < 0.2 < 0.5  1470 +- 265 < 6 < 5 < 12 < 7 < 14 < 7 < 10             | < 3.14 *c     *e  1350 +- 275     < 8     < 8     < 17     < 9     < 21     < 9     < 13                                                                                        | < 0.3 *e  1250 +- 236 < 8 < 7 < 12 < 9 < 16 < 8 < 14                                                                                                                                     |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95<br>Zr-95                    | < 0.3*b  1340 +- 321 < 11 < 9 < 18 < 14 < 27 < 13 < 17 < 11           | 0.3 +- 0.2  1350 +- 253                                                | < 0.7 *b  1480 +- 280 < 11 < 10 < 20 < 15 < 20 < 8 < 18 < 12           | < 0.2 < 0.5  1470 +- 265 < 6 < 5 < 12 < 7 < 14 < 7 < 10 < 7         | <ul> <li>3.14 *c</li> <li>*e</li> <li>1350 +- 275</li> <li>8</li> <li>8</li> <li>17</li> <li>9</li> <li>21</li> <li>9</li> <li>13</li> <li>8</li> </ul>                         | <ul> <li>&lt; 0.3 *e</li> <li>1250 +- 236</li> <li>&lt; 8</li> <li>&lt; 7</li> <li>&lt; 12</li> <li>&lt; 9</li> <li>&lt; 16</li> <li>&lt; 8</li> <li>&lt; 14</li> <li>&lt; 14</li> </ul> |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95<br>Zr-95<br>I-131<br>Cs-134 | < 0.3*b  1340 +- 321 < 11 < 9 < 18 < 14 < 27 < 13 < 17 < 11 < 11      | 0.3 +- 0.2  1350 +- 253                                                | < 0.7 *b  1480 +- 280 < 11 < 10 < 20 < 15 < 20 < 8 < 18 < 12 < 10      | < 0.2 < 0.5  1470 +- 265 < 6 < 5 < 12 < 7 < 14 < 7 < 10 < 7 < 7     | < 3.14 *c     *e  1350 +- 275     < 8     < 17     < 9     < 21     < 9     < 13     < 8     < 10                                                                               | < 0.3 *e  1250 +- 236 < 8 < 7 < 12 < 9 < 16 < 8 < 14 < 14 < 8                                                                                                                            |
| I-131 Sr-90 gamma isotopic K-40 Mn-54 Co-58 Fe-59 Co-60 Zn-65 Nb-95 Zr-95 I-131 Cs-134 Cs-137                              | < 0.3*b  1340 +- 321 < 11 < 9 < 18 < 14 < 27 < 13 < 17 < 11 < 11 < 11 | 0.3 +- 0.2  1350 +- 253                                                | < 0.7 *b  1480 +- 280 < 11 < 10 < 20 < 15 < 20 < 8 < 18 < 12 < 10 < 13 | < 0.2 < 0.5  1470 +- 265 < 6 < 5 < 12 < 7 < 14 < 7 < 10 < 7 < 7 < 7 | <ul> <li>3.14 *c</li> <li>*e</li> <li>1350 +- 275</li> <li>8</li> <li>8</li> <li>17</li> <li>9</li> <li>21</li> <li>9</li> <li>13</li> <li>8</li> <li>10</li> <li>10</li> </ul> | < 0.3     *e  1250 +- 236     < 8     < 7     < 12     < 9     < 16     < 8     < 14     < 14     < 8     < 6                                                                            |

<sup>\*</sup>b - There was a quality issue with the sample

<sup>\*</sup>d - There was an unacceptable high background

<sup>\*</sup>a - Detection limit not met due to laboratory error

<sup>\*</sup>c - The detection limit of 0.5 pCi/L was not met

<sup>\*</sup>e - laboratory error, data not reported

Table 13. Wisconsin DHS analysis results for milk samples collected for the Point Beach – Kewaunee environmental monitoring program, continued.

| PBK-24: | Struck f | arm |
|---------|----------|-----|
|---------|----------|-----|

| Collection date:                                                                                         | 01/08/14                                                     | 02/12/14                                                 | 03/12/14                                                 | 04/09/14                                          | 05/14/14                  | 06/11/14                 |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|---------------------------|--------------------------|
| I-131                                                                                                    |                                                              | < 0.7 *c                                                 |                                                          | *e                                                |                           | *e                       |
| Sr-90                                                                                                    | 0.4 +- 0.2                                                   | 0.6 +- 0.2                                               | < 0.3                                                    | < 0.3                                             | 0.8 +- 0.2                | 0.4 +- 0.0               |
| gamma isotopic                                                                                           |                                                              |                                                          |                                                          |                                                   |                           |                          |
| K-40                                                                                                     | 1360 +- 280                                                  | 1300 +- 260                                              | 1600 +- 320                                              | 1250 +- 250                                       | 1620 +- 330               | 1400 +- 320              |
| Mn-54                                                                                                    | < 11                                                         | < 9                                                      | < 11                                                     | < 9                                               | < 11                      | < 11                     |
| Co-58                                                                                                    | < 9                                                          | < 6                                                      | < 12                                                     | < 7                                               | < 7                       | < 7                      |
| Fe-59                                                                                                    | < 20                                                         | < 17                                                     | < 22                                                     | < 17                                              | < 18                      | < 17                     |
| Co-60                                                                                                    | < 15                                                         | < 10                                                     | < 14                                                     | < 13                                              | < 9                       | < 12                     |
| Zn-65                                                                                                    | < 23                                                         | < 18                                                     | < 30                                                     | < 20                                              | < 22                      | < 17                     |
| Nb-95                                                                                                    | < 11                                                         | < 9                                                      | < 11                                                     | < 10                                              | < 10                      | < 11                     |
| Zr-95                                                                                                    | < 16                                                         | < 11                                                     | < 18                                                     | < 16                                              | < 16                      | < 14                     |
| I-131                                                                                                    | < 14                                                         | < 12                                                     | < 15                                                     | < 12                                              | < 9                       | < 10                     |
| Cs-134                                                                                                   | < 10                                                         | < 7                                                      | < 12                                                     | < 9                                               | < 8                       | < 9                      |
| Cs-137                                                                                                   | < 13                                                         | < 7                                                      | < 14                                                     | < 11                                              | < 7                       | < 11                     |
| Ba-140                                                                                                   | < 40                                                         | < 28                                                     | < 44                                                     | < 33                                              | < 28                      | < 32                     |
| La-140                                                                                                   | < 10                                                         | < 13                                                     | < 16                                                     | < 10                                              | < 13                      | < 14                     |
|                                                                                                          |                                                              |                                                          |                                                          |                                                   |                           |                          |
| Collection date:                                                                                         | 07/09/14                                                     | 08/13/14                                                 | 09/10/14                                                 | 10/08/14                                          | 11/12/14                  | 12/10/14                 |
| I-131                                                                                                    |                                                              |                                                          |                                                          |                                                   |                           |                          |
|                                                                                                          |                                                              |                                                          |                                                          | 0.22 +- 0.1                                       | < 1.29 <b>c</b>           | < 0.2                    |
| Sr-90                                                                                                    | < 0.3 *b                                                     | < 0.3                                                    | 0.6 +- 0.3                                               | 0.22 +- 0.1<br>0.59 +- 0.35 *b                    | < 1.29 <b>c</b><br>*e     | < 0.2<br>*e              |
| Sr-90<br>gamma isotopic                                                                                  | < 0.3 *b                                                     | < 0.3                                                    | 0.6 +- 0.3                                               |                                                   |                           | < 0.2<br>*e              |
|                                                                                                          | < 0.3 *b                                                     | < 0.3<br>1330 +- 246                                     | 0.6 +- 0.3<br>1490 +- 299                                |                                                   |                           |                          |
| gamma isotopic                                                                                           |                                                              |                                                          |                                                          | 0.59 +- 0.35 *b                                   | *e                        | *e                       |
| gamma isotopic<br>K-40                                                                                   | 1440 +- 284                                                  | 1330 +- 246                                              | 1490 +- 299                                              | 0.59 +- 0.35 *b<br>1270 +- 246                    | *e<br>1240 +- 258         | *e<br>1440 +- 270        |
| gamma isotopic<br>K-40<br>Mn-54                                                                          | 1440 +- 284<br>< 10                                          | 1330 +- 246 < 8                                          | 1490 +- 299<br>< 11                                      | 0.59 +- 0.35 *b<br>1270 +- 246<br>< 7             | *e 1240 +- 258 < 8        | *e<br>1440 +- 270<br>< 6 |
| gamma isotopic<br>K-40<br>Mn-54<br>Co-58                                                                 | 1440 +- 284<br>< 10<br>< 9                                   | 1330 +- 246<br>< 8<br>< 8                                | 1490 +- 299<br>< 11<br>< 10                              | 0.59 +- 0.35 *b  1270 +- 246  < 7  < 6            | *e  1240 +- 258  < 8  < 8 | *e  1440 +- 270          |
| gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59                                                        | 1440 +- 284<br>< 10<br>< 9<br>< 24                           | 1330 +- 246<br>< 8<br>< 8<br>< 16                        | 1490 +- 299<br>< 11<br>< 10<br>< 18                      | 0.59 +- 0.35 *b  1270 +- 246  < 7  < 6  < 11      | *e  1240 +- 258           | *e  1440 +- 270          |
| gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60                                               | 1440 +- 284<br>< 10<br>< 9<br>< 24<br>< 13                   | 1330 +- 246<br>< 8<br>< 8<br>< 16<br>< 12                | 1490 +- 299 < 11 < 10 < 18 < 14                          | 0.59 +- 0.35 *b  1270 +- 246  < 7  < 6  < 11  < 9 | *e  1240 +- 258           | *e  1440 +- 270          |
| gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65                                      | 1440 +- 284 < 10 < 9 < 24 < 13 < 22 < 11                     | 1330 +- 246<br>< 8<br>< 8<br>< 16<br>< 12<br>< 16        | 1490 +- 299 < 11 < 10 < 18 < 14 < 26 < 11                | 0.59 +- 0.35 *b  1270 +- 246                      | *e  1240 +- 258           | *e  1440 +- 270          |
| gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95                             | 1440 +- 284 < 10 < 9 < 24 < 13 < 22                          | 1330 +- 246<br>< 8<br>< 8<br>< 16<br>< 12<br>< 16<br>< 8 | 1490 +- 299 < 11 < 10 < 18 < 14 < 26                     | 0.59 +- 0.35 *b  1270 +- 246                      | *e  1240 +- 258           | *e  1440 +- 270          |
| gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95<br>Zr-95                    | 1440 +- 284 < 10 < 9 < 24 < 13 < 22 < 11 < 17                | 1330 +- 246                                              | 1490 +- 299                                              | 0.59 +- 0.35 *b  1270 +- 246                      | *e  1240 +- 258           | *e  1440 +- 270          |
| gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95<br>Zr-95                    | 1440 +- 284 < 10 < 9 < 24 < 13 < 22 < 11 < 17 < 15           | 1330 +- 246                                              | 1490 +- 299 < 11 < 10 < 18 < 14 < 26 < 11 < 17 < 12      | 0.59 +- 0.35 *b  1270 +- 246                      | *e  1240 +- 258           | *e  1440 +- 270          |
| gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95<br>Zr-95<br>I-131<br>Cs-134 | 1440 +- 284 < 10 < 9 < 24 < 13 < 22 < 11 < 17 < 15 < 10      | 1330 +- 246                                              | 1490 +- 299 < 11 < 10 < 18 < 14 < 26 < 11 < 17 < 12 < 11 | 0.59 +- 0.35 *b  1270 +- 246                      | *e  1240 +- 258           | *e  1440 +- 270          |
| gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95<br>Zr-95<br>I-131<br>Cs-134 | 1440 +- 284 < 10 < 9 < 24 < 13 < 22 < 11 < 17 < 15 < 10 < 13 | 1330 +- 246                                              | 1490 +- 299                                              | 0.59 +- 0.35 *b  1270 +- 246                      | *e  1240 +- 258           | *e  1440 +- 270          |

<sup>\*</sup>b - There was a quality issue with the sample

<sup>\*</sup>d - There was an unacceptable high background

<sup>\*</sup>a - Detection limit not met due to laboratory error

<sup>\*</sup>c - The detection limit of 0.5 pCi/L was not met

<sup>\*</sup>e - laboratory error, data not reported

Table 13. Wisconsin DHS analysis results for milk samples collected for the Point Beach – Kewaunee environmental monitoring program, continued.

| Collection date:                                                                                                           | 01/08/14                                                                       | 02/12/14                                                          | 03/12/14                                                                      | 04/09/14                                                                      | 05/14/14                                                                                                       | 06/11/14                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I-131                                                                                                                      |                                                                                | < 0.8                                                             |                                                                               | *e                                                                            |                                                                                                                | *e                                                                                                                                                                                                                                           |
| Sr-90                                                                                                                      | < 0.3                                                                          | 0.5 +- 0.2                                                        | < 0.3                                                                         | < 0.3                                                                         | 0.3 +- 0.2                                                                                                     | 0.21 +- 0.1                                                                                                                                                                                                                                  |
| gamma isotopic                                                                                                             |                                                                                |                                                                   |                                                                               |                                                                               |                                                                                                                |                                                                                                                                                                                                                                              |
| K-40                                                                                                                       | 1530 +- 350                                                                    | 1460 +- 260                                                       | 1430 +- 290                                                                   | 1690 +- 380                                                                   | 1300 +- 270                                                                                                    | 1520 +- 348                                                                                                                                                                                                                                  |
| Mn-54                                                                                                                      | < 12                                                                           | < 8                                                               | < 9                                                                           | < 11                                                                          | < 10                                                                                                           | < 11                                                                                                                                                                                                                                         |
| Co-58                                                                                                                      | < 8                                                                            | < 7                                                               | < 9                                                                           | < 13                                                                          | < 9                                                                                                            | < 10                                                                                                                                                                                                                                         |
| Fe-59                                                                                                                      | < 22                                                                           | < 15                                                              | < 17                                                                          | < 23                                                                          | < 22                                                                                                           | < 27                                                                                                                                                                                                                                         |
| Co-60                                                                                                                      | < 15                                                                           | < 9                                                               | < 10                                                                          | < 14                                                                          | < 14                                                                                                           | < 15                                                                                                                                                                                                                                         |
| Zn-65                                                                                                                      | < 27                                                                           | < 15                                                              | < 20                                                                          | < 24                                                                          | < 23                                                                                                           | < 22                                                                                                                                                                                                                                         |
| Nb-95                                                                                                                      | < 13                                                                           | < 7                                                               | < 9                                                                           | < 13                                                                          | < 10                                                                                                           | < 12                                                                                                                                                                                                                                         |
| Zr-95                                                                                                                      | < 17                                                                           | < 11                                                              | < 15                                                                          | < 16                                                                          | < 18                                                                                                           | < 18                                                                                                                                                                                                                                         |
| I-131                                                                                                                      | < 11                                                                           | < 14                                                              | < 10                                                                          | < 11                                                                          | < 13                                                                                                           | < 9                                                                                                                                                                                                                                          |
| Cs-134                                                                                                                     | < 11                                                                           | < 7                                                               | < 8                                                                           | < 12                                                                          | < 11                                                                                                           | < 10                                                                                                                                                                                                                                         |
| Cs-137                                                                                                                     | < 7                                                                            | < 9                                                               | < 8                                                                           | < 8                                                                           | < 14                                                                                                           | < 8                                                                                                                                                                                                                                          |
| Ba-140                                                                                                                     | < 36                                                                           | < 37                                                              | < 35                                                                          | < 43                                                                          | < 44                                                                                                           | < 43                                                                                                                                                                                                                                         |
| La-140                                                                                                                     | < 11                                                                           | < 11                                                              | < 14                                                                          | < 4                                                                           | < 12                                                                                                           | < 11                                                                                                                                                                                                                                         |
|                                                                                                                            |                                                                                |                                                                   |                                                                               |                                                                               |                                                                                                                |                                                                                                                                                                                                                                              |
|                                                                                                                            |                                                                                |                                                                   |                                                                               |                                                                               |                                                                                                                |                                                                                                                                                                                                                                              |
| Collection date:                                                                                                           | 07/09/14                                                                       | 08/13/14                                                          | 09/10/14                                                                      | 10/08/14                                                                      | 11/12/14                                                                                                       | 12/10/14                                                                                                                                                                                                                                     |
| Collection date:                                                                                                           | 07/09/14                                                                       | 08/13/14                                                          | 09/10/14                                                                      | 10/08/14                                                                      | 11/12/14<br>< 1.96 * <b>c</b>                                                                                  |                                                                                                                                                                                                                                              |
|                                                                                                                            | 07/09/14<br>*d                                                                 | 08/13/14<br>< 0.4 *d                                              | 09/10/14                                                                      |                                                                               |                                                                                                                |                                                                                                                                                                                                                                              |
| I-131                                                                                                                      |                                                                                |                                                                   |                                                                               | < 0.2                                                                         | < 1.96 * <b>c</b>                                                                                              | < 0.3                                                                                                                                                                                                                                        |
| I-131<br>Sr-90                                                                                                             |                                                                                |                                                                   |                                                                               | < 0.2                                                                         | < 1.96 * <b>c</b>                                                                                              | < 0.3                                                                                                                                                                                                                                        |
| I-131<br>Sr-90<br>gamma isotopic                                                                                           | *d                                                                             | < 0.4 *d                                                          | < 0.3                                                                         | < 0.2<br>*b                                                                   | < 1.96 * <b>c</b><br>*e                                                                                        | < 0.3<br>*e                                                                                                                                                                                                                                  |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40                                                                                   | *d<br>1310 +- 266                                                              | < 0.4 *d<br>1470 +- 216                                           | < 0.3<br>1310 +- 273                                                          | < 0.2<br>*b                                                                   | < 1.96 *c     *e  1300 +- 269                                                                                  | < 0.3<br>*e                                                                                                                                                                                                                                  |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40<br>Mn-54                                                                          | *d<br>1310 +- 266<br>< 11                                                      | < 0.4 *d<br>1470 +- 216<br>< 6                                    | < 0.3<br>1310 +- 273<br>< 12                                                  | < 0.2<br>*b<br>1380 +- 263<br>< 7                                             | < 1.96 *c                                                                                                      | < 0.3<br>*e<br>1390 +- 264<br>< 8                                                                                                                                                                                                            |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40<br>Mn-54<br>Co-58                                                                 | *d  1310 +- 266  < 11  < 10                                                    | < 0.4 *d<br>1470 +- 216<br>< 6<br>< 7                             | < 0.3<br>1310 +- 273<br>< 12<br>< 9                                           | < 0.2<br>*b<br>1380 +- 263<br>< 7<br>< 6                                      | < 1.96 *c     *e  1300 +- 269     < 10     < 11                                                                | < 0.3<br>*e<br>1390 +- 264<br>< 8<br>< 7                                                                                                                                                                                                     |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59                                                        | *d  1310 +- 266  < 11  < 10  < 21                                              | < 0.4 *d<br>1470 +- 216<br>< 6<br>< 7<br>< 14                     | < 0.3<br>1310 +- 273<br>< 12<br>< 9<br>< 24                                   | < 0.2<br>*b<br>1380 +- 263<br>< 7<br>< 6<br>< 14                              | < 1.96 *c     *e  1300 +- 269     < 10     < 11     < 17                                                       | < 0.3     *e  1390 +- 264     < 8     < 7     < 13                                                                                                                                                                                           |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60                                               | *d  1310 +- 266  < 11  < 10  < 21  < 15                                        | < 0.4 *d  1470 +- 216                                             | < 0.3<br>1310 +- 273<br>< 12<br>< 9<br>< 24<br>< 15                           | < 0.2<br>*b<br>1380 +- 263<br>< 7<br>< 6<br>< 14<br>< 7                       | < 1.96 *c     *e  1300 +- 269     < 10     < 11     < 17     < 13                                              | < 0.3     *e  1390 +- 264     < 8     < 7     < 13     < 9                                                                                                                                                                                   |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65                                      | *d  1310 +- 266  < 11  < 10  < 21  < 15  < 25                                  | < 0.4 *d  1470 +- 216                                             | < 0.3  1310 +- 273  < 12  < 9  < 24  < 15  < 21  < 12                         | < 0.2 *b  1380 +- 263 < 7 < 6 < 14 < 7 < 19 < 10                              | < 1.96 *c     *e  1300 +- 269     < 10     < 11     < 17     < 13     < 22     < 11                            | <ul> <li>&lt; 0.3     *e</li> <li>1390 +- 264</li> <li>&lt; 8</li> <li>&lt; 7</li> <li>&lt; 13</li> <li>&lt; 9</li> <li>&lt; 17</li> <li>&lt; 9</li> </ul>                                                                                   |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95                             | *d  1310 +- 266  < 11  < 10  < 21  < 15  < 25  < 10                            | < 0.4 *d  1470 +- 216                                             | < 0.3  1310 +- 273 < 12 < 9 < 24 < 15 < 21 < 12 < 18                          | < 0.2 *b  1380 +- 263 < 7 < 6 < 14 < 7 < 19 < 10 < 12                         | < 1.96 *c     *e  1300 +- 269     < 10     < 11     < 17     < 13     < 22     < 11     < 18                   | < 0.3     *e  1390 +- 264     < 8     < 7     < 13     < 9     < 17                                                                                                                                                                          |
| I-131 Sr-90 gamma isotopic K-40 Mn-54 Co-58 Fe-59 Co-60 Zn-65 Nb-95 Zr-95                                                  | *d  1310 +- 266  < 11  < 10  < 21  < 15  < 25  < 10  < 18                      | < 0.4 *d  1470 +- 216                                             | < 0.3  1310 +- 273 < 12 < 9 < 24 < 15 < 21 < 12 < 18 < 14                     | < 0.2 *b  1380 +- 263 < 7 < 6 < 14 < 7 < 19 < 10 < 12                         | < 1.96 *c *e  1300 +- 269 < 10 < 11 < 17 < 13 < 22 < 11 < 18 < 13                                              | < 0.3     *e  1390 +- 264     < 8     < 7     < 13     < 9     < 17     < 9     < 14                                                                                                                                                         |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95<br>Zr-95<br>I-131           | *d  1310 +- 266  < 11  < 10  < 21  < 15  < 25  < 10  < 18  < 13                | < 0.4 *d  1470 +- 216                                             | < 0.3  1310 +- 273 < 12 < 9 < 24 < 15 < 21 < 12 < 18 < 14                     | < 0.2  *b  1380 +- 263  < 7  < 6  < 14  < 7  < 19  < 10  < 12  < 14           | < 1.96 *c *e  1300 +- 269 < 10 < 11 < 17 < 13 < 22 < 11 < 18 < 13                                              | <ul> <li>&lt; 0.3     *e</li> <li>1390 +- 264</li> <li>&lt; 8</li> <li>&lt; 7</li> <li>&lt; 13</li> <li>&lt; 9</li> <li>&lt; 17</li> <li>&lt; 9</li> <li>&lt; 14</li> <li>&lt; 14</li> </ul>                                                 |
| I-131<br>Sr-90<br>gamma isotopic<br>K-40<br>Mn-54<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-95<br>Zr-95<br>I-131<br>Cs-134 | *d  1310 +- 266  < 11  < 10  < 21  < 15  < 25  < 10  < 18  < 13  < 10          | < 0.4 *d  1470 +- 216                                             | < 0.3  1310 +- 273  < 12  < 9  < 24  < 15  < 12  < 18  < 14  < 11             | < 0.2  *b  1380 +- 263  < 7  < 6  < 14  < 7  < 19  < 10  < 12  < 14  < 9  < 8 | < 1.96 *c     *e  1300 +- 269     < 10     < 11     < 17     < 13     < 22     < 11     < 18     < 13     < 11 | <ul> <li>&lt; 0.3     *e</li> <li>1390 +- 264</li> <li>&lt; 8</li> <li>&lt; 7</li> <li>&lt; 13</li> <li>&lt; 9</li> <li>&lt; 17</li> <li>&lt; 9</li> <li>&lt; 14</li> <li>&lt; 14</li> <li>&lt; 9</li> </ul>                                 |
| I-131 Sr-90 gamma isotopic K-40 Mn-54 Co-58 Fe-59 Co-60 Zn-65 Nb-95 Zr-95 I-131 Cs-134 Cs-137                              | *d  1310 +- 266  < 11  < 10  < 21  < 15  < 25  < 10  < 18  < 13  < 10  < 15 *a | < 0.4 *d  1470 +- 216 < 6 < 7 < 14 < 9 < 14 < 6 < 12 < 11 < 6 < 9 | < 0.3  1310 +- 273  < 12  < 9  < 24  < 15  < 21  < 12  < 18  < 14  < 11  < 15 | < 0.2  *b  1380 +- 263  < 7  < 6  < 14  < 7  < 19  < 10  < 12  < 14  < 9      | < 1.96 *c *e  1300 +- 269 < 10 < 11 < 17 < 13 < 22 < 11 < 18 < 13 < 11 < 14                                    | <ul> <li>&lt; 0.3     *e</li> <li>1390 +- 264</li> <li>&lt; 8</li> <li>&lt; 7</li> <li>&lt; 13</li> <li>&lt; 9</li> <li>&lt; 17</li> <li>&lt; 9</li> <li>&lt; 14</li> <li>&lt; 14</li> <li>&lt; 9</li> <li>&lt; 9</li> <li>&lt; 9</li> </ul> |

<sup>\*</sup>a - Detection limit not met due to laboratory error

<sup>\*</sup>b - There was a quality issue with the sample

<sup>\*</sup>c - The detection limit of 0.5 pCi/L was not met

<sup>\*</sup>d – There was an unacceptable high background

<sup>\*</sup>e – laboratory error, data not reported

Table 14 Wisconsin DHS analysis results for vegetation samples collected for the Point Beach – Kewaunee environmental monitoring program.

| Measurements in u | nits of pCi/kilogram (we | t)          |              |              |              |
|-------------------|--------------------------|-------------|--------------|--------------|--------------|
| Site:             | PBK-1                    | PBK-2       | PBK-3        | PBK-4        | PBK-5        |
| Collection date:  | 06/17/14                 | 06/18/14    | 06/17/14     | 06/18/14     | 06/17/14     |
| gross alpha       | < 1140                   | < 620       | < 1070       | < 640        | < 730        |
| gross beta        | 7200 +- 400              | 2300 +- 200 | 5300 +- 400  | 3300 +- 300  | 5700 +- 300  |
| gamma isotopic    |                          |             |              |              |              |
| Be-7              | 600 +- 130               | 710 +- 140  | 930 +- 190   | 420 +- 110   | 260 +- 110   |
| K-40              | 4800 +- 900              | 4100 +- 800 | 5300 +- 1000 | 5200 +- 1000 | 5700 +- 1000 |
| Mn-54             | < 24                     | < 17        | < 15         | < 16         | < 24         |
| Co-58             | < 24                     | < 17        | < 25         | < 14         | < 21         |
| Fe-59             | < 59                     | < 44        | < 49         | < 41         | < 46         |
| Co-60             | < 31                     | < 20        | < 23         | < 21         | < 27         |
| Zn-65             | < 47                     | < 48        | < 47         | < 39         | < 48         |
| Nb-95             | < 24                     | < 21        | < 28         | < 21         | < 27         |
| Zr-95             | < 40                     | < 37        | < 40         | < 22         | < 49         |
| I-131             | < 82 *a                  | < 47        | < 68         | < 25         | < 82 *a      |
| Cs-134            | < 23                     | < 15        | < 18         | < 14         | < 22         |
| Cs-137            | < 29                     | < 14        | < 20         | < 18         | < 28         |
| Ba-140            | < 140                    | < 110       | < 120        | < 66         | < 160        |
| La-140            | < 55                     | < 41        | < 45         | < 7          | < 67         |
| Site:             | PBK-7                    | PBK-8       | PBK-14       | PBK-17       |              |
| Collection date:  | 06/18/14                 | 06/17/14    | 06/1714      | 06/17/14     |              |
| gross alpha       | < 770                    | < 383       | < 739        | < 560        | < 770        |
| gross beta        | < 300                    | 3390 +- 184 | 4430 +- 288  | 3800 +- 701  | < 300        |
| gamma isotopic    |                          |             |              |              |              |
| Be-7              | 760 +- 140               | 378 96      | 757 +- 160   | 233 +- 76    | 760 +- 140   |
| K-40              | 5000 +- 900              | 4440 807    | 4150 +- 814  | 3750 +- 701  | 5000 +- 900  |
| Mn-54             | < 17                     | 19          | < 29         | < 14         | < 17         |
| Co-58             | < 16                     | 15          | < 27         | < 14         | < 16         |
| Fe-59             | < 35                     | 38          | < 53         | < 26         | < 35         |
| Co-60             | < 24                     | 23          | < 34         | < 17         | < 24         |
| Zn-65             | < 44                     | 37          | < 65         | < 32         | < 44         |
| Nb-95             | < 22                     | 23          | < 32         | < 15         | < 22         |
| Zr-95             | < 34                     | 34          | < 47         | < 20         | < 34         |
| I-131             | < 28                     | 44          | < 58         | < 22         | < 28         |
| Cs-134            | < 17                     | 20          | < 29         | < 13         | < 17         |
| Cs-137            | < 15                     | 21          | < 33         | < 11         | < 15         |
| Ba-140            | < 80                     | 112         | < 156        | < 60         | < 80         |
| Dd-140            | < 011                    | 117         |              |              |              |

<sup>\*</sup>a - required detection limit was not met due to laboratory error

Table 14. Wisconsin DHS analysis results for vegetation samples collected for the Point Beach – Kewaunee environmental monitoring program, continued.

| Measurements in ur | nits of pCi/kilogram (we | t)           |              |              |              |
|--------------------|--------------------------|--------------|--------------|--------------|--------------|
| Site:              | PBK-1                    | PBK-2        | PBK-3        | PBK-4        | PBK-5        |
| Collection date:   | 10/28/14                 | 10/28/14     | 10/29/14     | 10/29/14     | 10/29/14     |
| gross alpha        | 3390 +- 1790             | < 2560       | < 969        | < 2090       | < 1020       |
| gross beta         | 4180 +- 673              | 4390 +- 604  | 6720 +- 403  | 3680 +- 564  | 6870 +- 487  |
| gamma isotopic     |                          |              |              |              |              |
| Be-7               | 8720 +- 505              | 5100 +- 391  | 3450 +- 308  | 5840 +- 518  | 3900 +- 366  |
| K-40               | 3400 +- 644              | 5300 +- 918  | 8260 +- 1400 | 5360 +- 1000 | 6820 +- 1200 |
| Mn-54              | < 20                     | < 20         | < 20         | < 23         | < 21         |
| Co-58              | < 20                     | < 20         | < 24         | < 25         | < 21         |
| Fe-59              | < 53                     | < 45         | < 50         | < 60         | < 46         |
| Co-60              | < 23                     | < 27         | < 30         | < 27         | < 21         |
| Zn-65              | < 47                     | < 42         | < 46         | < 50         | < 46         |
| Nb-95              | < 24                     | < 25         | < 24         | < 32         | < 23         |
| Zr-95              | < 36                     | < 40         | < 42         | < 45         | < 39         |
| I-131              | < 71                     | < 83 *a      | < 78         | < 77         | < 56         |
| Cs-134             | < 21                     | < 20         | < 21         | < 23         | < 19         |
| Cs-137             | < 20                     | < 25         | < 26         | < 21         | < 19         |
| Ba-140             | < 158                    | < 163        | < 176        | < 175        | < 140        |
| La-140             | < 52                     | < 51         | < 49         | < 34         | < 27         |
|                    |                          |              |              |              |              |
| Site:              | PBK-7                    | PBK-8        | PBK-14       | PBK-17       |              |
|                    |                          |              |              |              |              |
| Collection date:   | 10/29/14                 | 10/29/14     | 10/28/14     | 10/29/14     |              |
| gross alpha        | < 1640                   | < 2480       | < 1440       | < 1210       |              |
| gross beta         | < 631                    | 5920 +- 628  | 2490 +- 413  | 3630 +- 435  |              |
| gamma isotopic     |                          |              |              |              |              |
| Be-7               | 3800 +- 388              | 6210 +- 449  | 2440 +- 304  | 3610 +- 331  |              |
| K-40               | 4710 +- 960              | 6220 +- 1060 | 4290 +- 873  | 4740 +- 854  |              |
| Mn-54              | < 31                     | < 22         | < 27         | < 24         |              |
| Co-58              | < 30                     | < 22         | < 30         | < 27         |              |
| Fe-59              | < 95                     | < 46         | < 59         | < 53         |              |
| Co-60              | < 43                     | < 28         | < 32         | < 33         |              |
| Zn-65              | < 64                     | < 43         | < 67         | < 48         |              |
| Nb-95              | < 30                     | < 26         | < 27         | < 29         |              |
| Zr-95              | < 36                     | < 40         | < 44         | < 41         |              |
| I-131              | < 80                     | < 76         | < 78         | < 82 *a      |              |
| Cs-134             | < 31                     | < 21         | < 25         | < 24         |              |
| Cs-137             | < 27                     | < 27         | < 22         | < 28         |              |
| Ba-140             | < 219                    | < 150        | < 142        | < 154        |              |
| La-140             | < 89                     | < 52         | < 64         | < 56         |              |
|                    |                          |              |              |              |              |

<sup>\*</sup>a - required detection limit was not met due to laboratory error

Table 15 Wisconsin DHS analysis results for soil samples collected for the Point Beach – Kewaunee environmental monitoring program.

| Site:            | PBK-1      |      | PE       | 3K-2 | 2        | PE    | 3K-         | 3    | PI       | 3K- | 4    | P     | BK- | -5   |
|------------------|------------|------|----------|------|----------|-------|-------------|------|----------|-----|------|-------|-----|------|
| Collection date: | 06/17/14   |      | 06/12/14 |      | 06/17/14 |       | 06/18/14    |      | 06/17/14 |     |      |       |     |      |
| gross alpha      | 5900 +- 2  | 2800 | 5400     | +-   | 2900     | 7700  | +-          | 3100 | 4900     | +-  | 2800 | 4600  | +-  | 2700 |
| gross beta       | 12400 +- 1 | 1399 | 19500    | +-   | 1600     | 14600 | +-          | 1300 | 15600    | +-  | 1400 | 15500 | +-  | 150  |
| gamma isotopic   |            |      |          |      |          |       |             |      |          |     |      |       |     |      |
| K-40             | 14200 +- 2 | 2400 | 20900    | +-   | 3500     | 19999 | +-          | 3300 | 16600    | +-  | 2800 | 17000 | +-  | 290  |
| Mn-54            | < 1        | 19   |          | <    | 41       |       | <           | 36   |          | <   | 29   |       | <   | 32   |
| Co-58            | < 2        | 25   |          | <    | 32       |       | <           | 29   |          | <   | 28   |       | <   | 28   |
| Fe-59            | < 6        | 61   |          | <    | 78       |       | <           | 77   |          | <   | 64   |       | <   | 77   |
| Co-60            | < 2        | 27   |          | <    | 40-      |       | <           | 41   |          | <   | 32   |       | <   | 40   |
| Zn-65            | < 5        | 57   |          | <    | 77       |       | <           | 80   |          | <   | 68   |       | <   | 74   |
| Nb-95            | < 3        | 30   |          | <    | 47       |       | <           | 41   |          | <   | 32   |       | <   | 34   |
| Zr-95            | < 4        | 44   |          | <    | 65       |       | <           | 64   |          | <   | 50   |       | <   | 52   |
| Cs-134           | < 2        | 22   |          | <    | 34       |       | <           | 30   |          | <   | 25   |       | <   | 25   |
| Cs-137           | 150 +- 3   | 30   | 170      | +-   | 30       | 150   |             | 30   | 90       |     | 20   | 130   |     | 30   |
| Site:            | PBK-7      |      | PE       | 3K-  | В        | PB    | <b>K-</b> 1 | 14   | PE       | K-1 | 17   |       |     |      |
| Collection date: | 06/18/14   | 4    | 06/17/14 |      | 06/17/14 |       | 06/17/14    |      |          |     |      |       |     |      |
| gross alpha      | 9800 +- 3  | 3400 |          | <    | 383      |       | <           | 4000 |          | <   | 4000 | 9800  | +-  | 3400 |
| gross beta       | 18000 +- 1 | 1500 | 3390     | +-   | 184      |       | <           | 1500 | 13000    | +-  | 1350 | 18000 | +-  | 1500 |
| gamma isotopic   |            |      |          |      |          |       |             |      |          |     |      |       |     |      |
| K-40             | 19000 +- 3 | 3200 | 4440     | +-   | 807      | 1760  | +-          | 405  | 14200    | +-  | 2400 | 19000 | +-  | 3200 |
| Mn-54            | < 3        | 32   |          | <    | 19       |       | <           | 22   |          | <   | 29   |       | <   | 32   |
| Co-58            | < 3        | 31   |          | <    | 15       |       | <           | 17   |          | <   | 26   |       | <   | 31   |
| Fe-59            | < 8        | 84   |          | <    | 38       |       | <           | 43   |          | <   | 71   |       | <   | 84   |
| Co-60            | < 4        | 42   |          | <    | 23       |       | <           | 12   |          | <   | 29   |       | <   | 42   |
| Zn-65            | < 7        | 75   |          | <    | 37       |       | <           | 41   |          | <   | 73   |       | <   | 75   |
| Nb-95            | < 3        | 35   |          | <    | 23       |       | <           | 28   |          | <   | 38   |       | <   | 35   |
| Zr-95            | < 5        | 57   |          | <    | 34       |       | <           | 23   |          | <   | 63   |       | <   | 57   |
| Cs-134           | < 2        | 25   |          | <    | 20       |       | <           | 20   |          | <   | 26   |       | <   | 25   |
| Cs-137           | 120 +- 2   | 20   |          |      | 21       |       |             | 25   | 70       | +-  | 00   | 120   |     |      |

Naturally occurring radioisotopes such as radium-226 (<sup>226</sup>Ra), bismuth-214 (<sup>214</sup>Bi), lead-214 (<sup>214</sup>Pb), actinium-228 (<sup>228</sup>Ac), bismuth-212 (<sup>212</sup>Bi), lead-212 (<sup>212</sup>Pb) from the naturally occurring uranium-238 (<sup>238</sup>U) and thorium-232 (<sup>232</sup>Th) decay series are commonly detected but have not been quantified or reported.

Table 15. Wisconsin DHS analysis results for soil samples collected for the Point Beach – Kewaunee environmental monitoring program, continued.

| Measurements in ur | nits of pCi/kilogram (dry) |               |               |               |               |  |  |
|--------------------|----------------------------|---------------|---------------|---------------|---------------|--|--|
| Site:              | PBK-1                      | PBK-2         | PBK-3         | PBK-4         | PBK-5         |  |  |
| Collection date:   | 10/28/14                   | 10/28/14      | 10/29/14      | 10/29/14      | 10/29/14      |  |  |
| gross alpha        | 6080 +- 3030               | 7820 +- 3190  | 6630 +- 3010  | 4430 +- 2960  | 9310 +- 3670  |  |  |
| gross beta         | 17000 +- 1400              | 30700 +- 1790 | 19900 +- 1770 | 17500 +- 1380 | 21400 +- 1432 |  |  |
| gamma isotopic     |                            |               |               |               |               |  |  |
| K-40               | 13600 +- 2290              | 19400 +- 3250 | 16300 +- 2760 | 16700 +- 2840 | 17900 +- 3000 |  |  |
| Mn-54              | < 29                       | < 44          | < 35          | < 25          | < 39          |  |  |
| Co-58              | < 29                       | < 37          | < 37          | < 36          | < 32          |  |  |
| Fe-59              | < 70                       | < 101         | < 94          | < 85          | < 89          |  |  |
| Co-60              | < 32                       | < 56          | < 48          | < 35          | < 32          |  |  |
| Zn-65              | < 59                       | < 116         | < 95          | < 72          | < 85          |  |  |
| Nb-95              | < 31                       | < 50          | < 45          | < 39          | < 53          |  |  |
| Zr-95              | < 49                       | < 65          | <             | < 59          | < 68          |  |  |
| Cs-134             | < 25                       | < 36          | < 34          | < 31          | < 29          |  |  |
| Cs-137             | 231 +- 31                  | 121 +- 31     | 34 +- 17      | 95 +- 23      | 118 +- 27     |  |  |
| Site:              | PBK-7                      | PBK-8         | PBK-14        | PBK-17        |               |  |  |
| Collection date:   | 10/29/14                   | 10/29/14      | 10/28/14      | 10/29/14      |               |  |  |
| gross alpha        | 5500 +- 2930               | 6040 +- 3120  | 7320 +- 3560  | 6230 +- 3130  |               |  |  |
| gross beta         | 23300 +- 1470              | 20400 +- 1480 | 15300 +- 1850 | 15500 +- 1350 |               |  |  |
| gamma isotopic     |                            |               |               |               |               |  |  |
| K-40               | 20900 +- 3530              | 17100 +- 2900 | 17200 +- 2920 | 12600 +- 2180 |               |  |  |
| Mn-54              | < 35                       | < 32          | < 34          | < 30          |               |  |  |
| Co-58              | < 39                       | < 35          | < 32          | < 26          |               |  |  |
| Fe-59              | < 116                      | < 92          | < 96          | < 97          |               |  |  |
| Co-60              | < 44                       | < 32          | < 42          | < 33          |               |  |  |
| Zn-65              | < 95                       | < 85          | < 90          | < 75          |               |  |  |
| Nb-95              | < 53                       | < 51          | < 52          | < 45          |               |  |  |
| Zr-95              | < 72                       | < 69          | < 63          | < 59          |               |  |  |
| Cs-134             | < 36                       | < 30          | < 30          | < 28          |               |  |  |
| Cs-137             | 111 +- 27                  | 52 +- 18      | 111 +- 26     | 160 +- 28     |               |  |  |

Naturally occurring radioisotopes such as radium-226 (<sup>226</sup>Ra), bismuth-214 (<sup>214</sup>Bi), lead-214 (<sup>214</sup>Pb), actinium-228 (<sup>228</sup>Ac), bismuth-212 (<sup>212</sup>Bi), lead-212 (<sup>212</sup>Pb) from the naturally occurring uranium-238 (<sup>238</sup>U) and thorium-232 (<sup>232</sup>Th) decay series are commonly detected but have not been quantified or reported.