

Periprosthetic Joint Infection Coming of a Tsunami

Javad Parvizi, MD, FRCS

Professor of Orthopaedic Surgery
Rothman Institute at Thomas Jefferson
University

I (and/or my co-authors) have something to disclose.

Detailed disclosure information is available via:

"My Academy" app;

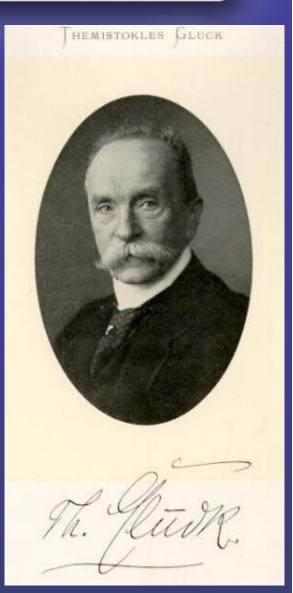
Printed Final Program; or

AAOS Orthopaedic Disclosure Program on the AAOS website at http://www.aaos.org/disclosure

PJI

Fact 1

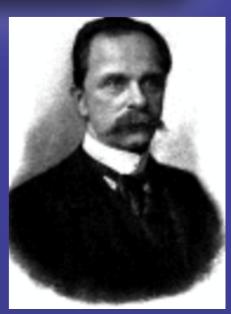
Infection is a terrible problem


Unrecognized Genuis

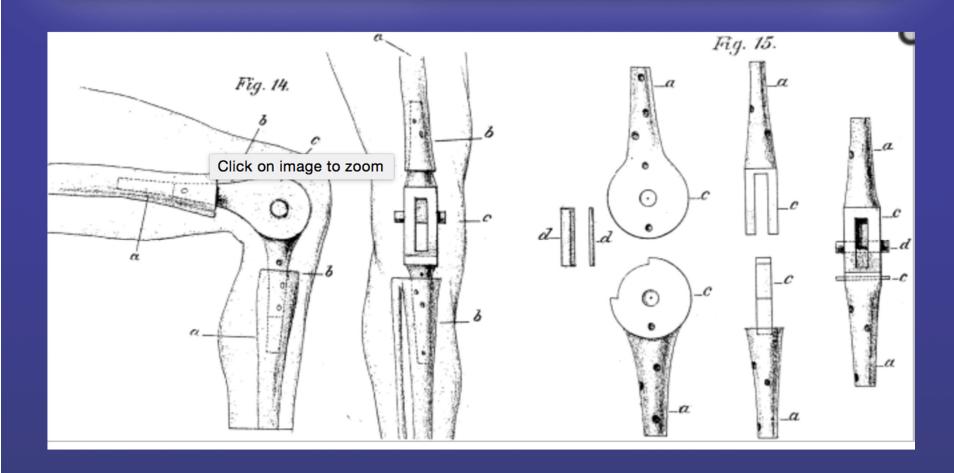
- 1880- First wrist arthroplasty
- 1890- first Ivory Knee replacement
 Into knee of a 17 year old girl
- 14 joints that year including a hip
- Reported on five cases

INFECTION

.... ailments of human will be treated by artificial materials......



Unrecognized Genuis


- Themistokles Gluck (1853-1942)
- Balkan War surgeon bone defect
- Intramedullary fixation
- Biocompatability
- Plate fixation (mandible)
- Bone cement (So much earlier than Haboush (1953), Wiltse (1957), Charnley(1964)
- 1880- vascular graft (Alexis Carrel who was given the Noble Prize in 1912

Unrecognized Genuis

Periprosthetic Joint Infection

1979s Sir John Charnley

...joint sepsis will be the major hurdle in our way in the future..

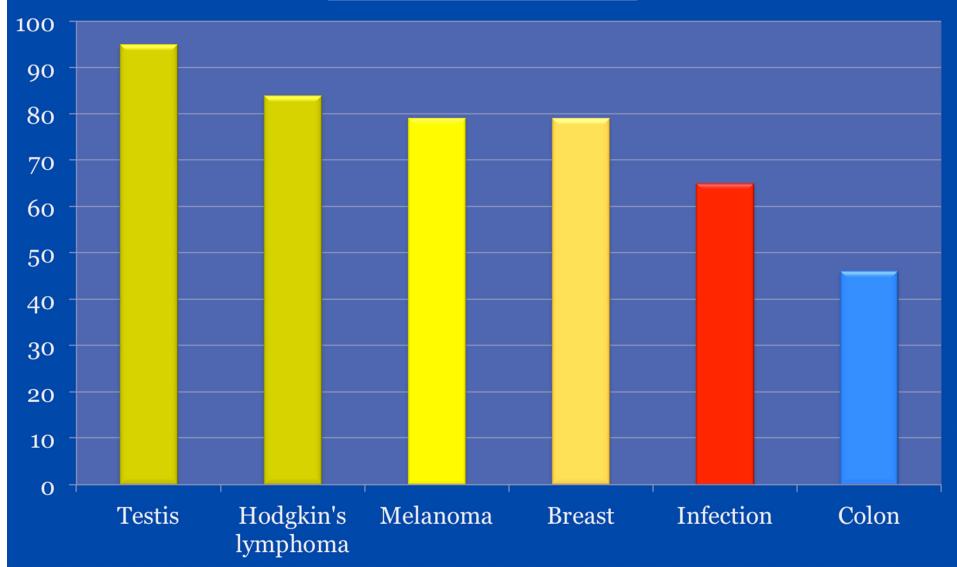
Rothman Institute Orthopaedics Thomas Jefferson University

PJI Challenges

High morbidity

PJI Challenges

Infection kills



PJI worse than Some Cancers

Mortality after TJA Medicare Study

Are We Winning or Losing the War with PJI: Trends in PJI and Mortality Risk for the Medicare Population

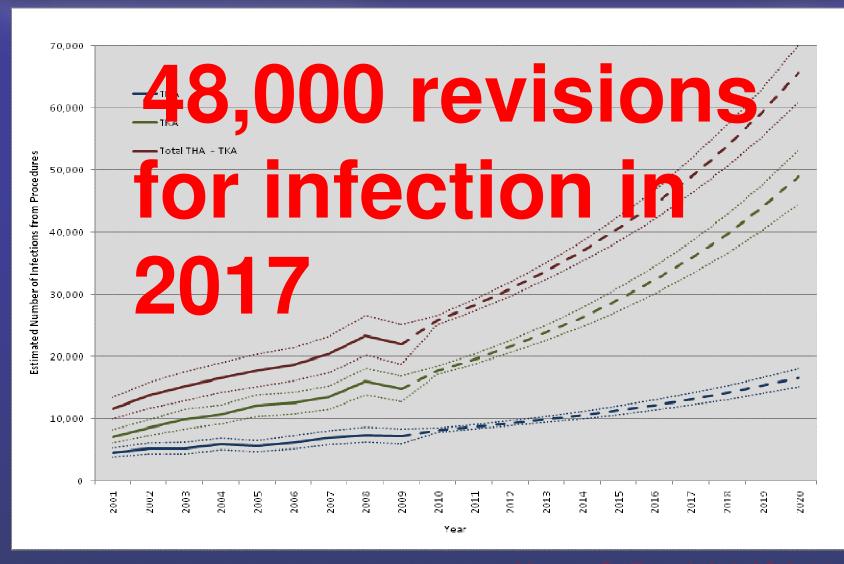
- Steven M. Kurtz PhD
- Edmund Lau MS
- Min-Sun Son PhD
- Ellen T. Chang ScD
- Werner Zimmerli MD
- Javad Parvizi MD

Summary of Findings

- PJI incidence has not improved over time
- Mortality risk after PJI has decreased over time
- The 5-year overall survival of PJI patients is comparable to two of the most common cancers
 - **TKA:** 72%
 - ■Breast cancer: 73%
 - Prostate cancer: 79%

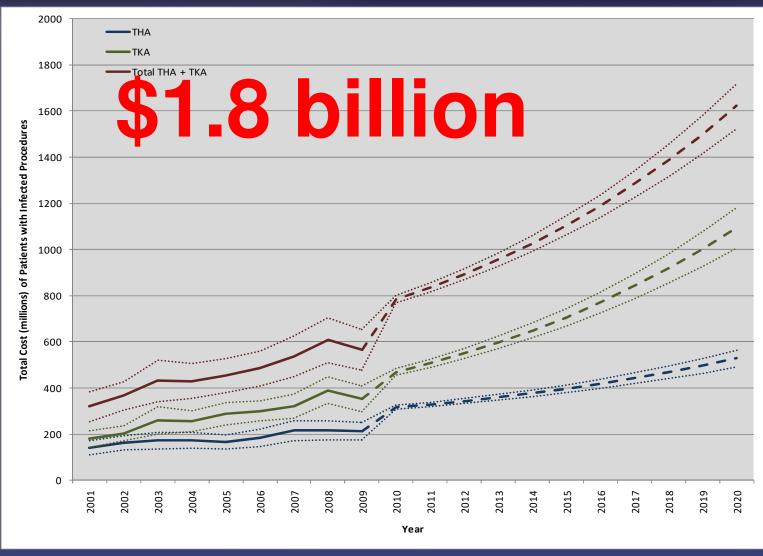
PJI

Jefferson


Fact 2

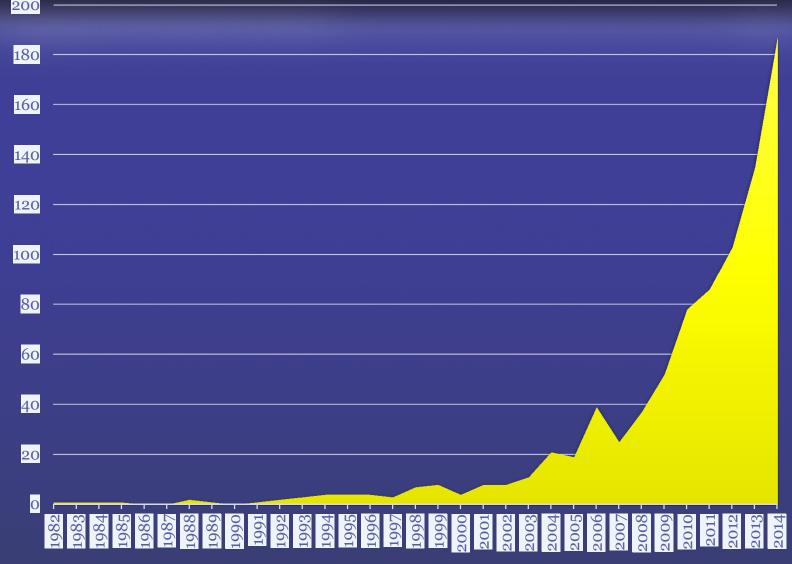
Infection is on the rise

Infected Revisions 2001-2010 Burden



Infected Revisions 2001-2010 Cost

PJI


Fact 3

Prevention is best

Obtained using the keyword "periprosthetic joint infection"

Prevention of Surgical Site Infection

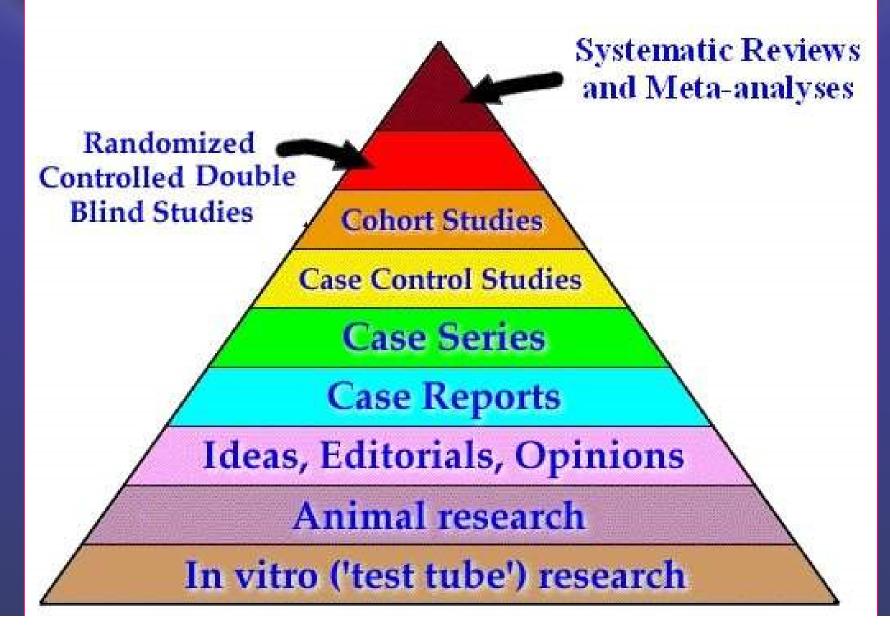
Periprosthetic Joint Infection

Prevention of SSI Guidelines are in development

CDC Guidelines for SSI Prevention

- Core Section
 - Antimicrobial prophylaxis
 - Glycemic control
 - Normothermia
 - Tissue oxygenation
 - Skin Preparation
 - S.aureus colonization
 - Surgical check list

CDC Guidelines for SSI Prevention



- Arthroplasty
 - Transfusion
 - Immunosuppression
 - Anticoagulation
 - Surgical attire
 - Surgical technique
 - Anesthesia
 - Environment
 - Biofilm

Evidence Based Pyramid

CDC Guidelines for SSI Prevention

Much of what we have is based on thin science, if any at all

International Consensus Meeting

Philadelphia, August 2013

International Consensus

- Question: What are significant risk factors for development of surgical site infection (SSI) or periprosthetic joint infection (PJI) after elective total joint arthroplasty (TJA)?
- Consensus: The risk factors for SSI or PJI include history of previous surgery, uncontrolled diabetes mellitus, malnutrition, morbid obesity, active liver disease, active renal disease, excessive smoking (>one pack per day), excessive alcohol consumption (>40 units per week), intravenous drug abuse, recent hospitalization, extended stay in a rehabilitation facility, male gender, diagnosis of post-traumatic arthritis, inflammatory arthropathy, prior surgical procedure in the affected joint, and severe immunodeficiency.
- **Delegate Vote:** Agree: 94%, Disagree: 4%, Abstain: 2%.

Prevention of PJI

Optimize Host

Patient Optimization

- Systemic or local infection
- Immunosuppressive state
- Uncontrolled Diabetes/hyperglycemia
- Chronic disease (anemia, liver, renal, etc.)
- Malnutrition
- Obesity
- Affective disorders
- Smoking
- Excessive Alcohol consumption
- IV drugs/HIV

Patient Optimization

- Systemic or local infection
- Immunosuppressive state
- Uncontrolled Diabetes/hyperglycemia
- Chronic disease (anemia, liver, renal, etc.)
- Malnutrition
- Obesity
- Affective disorders
- lacksquare Smoking
- Excessive Alcohol consumption
- IV drugs/HIV

Control Nidus

- GI/GU (urine)
- Skin
- Nails
- Oral cavity

PJI Consensus

- No role for routine dental clearance
 - Ask about oral disease

Is routine dental clearance necessary?

- 358 elective TJA
 - With dental clearance
- 218 hip fracture (THA or hemiarthroplasty)
 - No dental clearance
- No statistical difference was found between the two groups in terms of early postoperative infection

Lampley A et al. JOA, 2014

Dental disease

- Risk factors
 - Tobacco use,
 - Poor flossing habits,
 - Hx of tooth extraction,
 - Narcotic use,
 - Lack of a dentist visit within 12 months.

Tokarski AT et al. The Journal of Arthroplasty 2014

PJI Consensus

No role for routine urine screening

Ask about urinary symptoms

PJI Consensus

- Routine urine screening
- 4.58 wound infections in non-prosthetic knee
 operations
- Cost = \$1,500,000 per wound infection prevented

Lawrence VA et al . J Clin Epidemiol. 1989

Patient Optimization

- Systemic or local infection
- **Immunosuppressive state**
- Uncontrolled Diabetes/hyperglycemia
- Chronic disease (anemia, liver, renal, etc.)
- Malnutrition
- Obesity
- Affective disorders
- Smoking
- Excessive Alcohol consumption
- IV drugs/HIV

- Increases risk of infection/ other complications
- Inherent disease state
- DMARDS/steroids
- Hazard ratio = 1.96

Berbari EF, et al; Clin Infect Dis, 27:1247, 1998

Pulido L et al CORR 2009

Moucha et al JBJS 2011

PJI in Patients with RA

Ann Rheum Dis 2011;70:1810-1814.

Table 3 Baseline patient characteristics

Number of patients with prosthetic joints	nbDMARD (n=659)	Anti-TNF (n=2689)
Exposure time (years)*	1954	12 959
Events	6	41
Incidence prosthetic joint SA/1000 pyrs (95% CI)	3.1 (1.1 to 6.7)	3.2 (2.3 to 4.3)
Adjusted HR (95% CI)	Ref	1.2 (0.4 to 3.4)

^{*}Patients were included in this analysis only if they had a prosthetic joint in situ. Anti-TNF, anti-tumour necrosis factor; nbDMARD, non-biological disease-modifying antirheumatic drug; pyrs, patient years.

DMARDS and PJI

Patients on DMARDs have serious infections

Giles JT et al Arthritis Care Res 2006

DMARDS and PJI

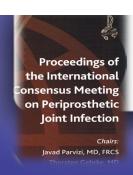
2005 BSR

- Biologics stopped 2-4 weeks prior to procedure
- and restarted after wound healing

2012 ACR

Topic not addressed

CDC Guidelines for SSI Prevention



- Arthroplasty
 - Transfusion
 - Immunosuppression
 - Anticoagulation

No recommendation

International Consensus

- Question: Should disease-modifying agents be stopped prior to elective TJA?
- **Consensus:** Yes. Disease-modifying agents should be stopped prior to elective TJA; however, the timing of drug discontinuation should be based on specific medication and the individual patient.
- Delegate Vote: Agree: 92%, Disagree: 5%, Abstain: 3%.

Medication	Half life	Recommendation
lonsteroidal Anti-inflammatory Prugs (NSAIDs)	2-17 hours	Discontinue therapy within 1 week prior to surgery
lethotrexate	0.7 to 5.8 hours	Discontinue therapy within 1 week prior to surgery Continue therapy 2 weeks after surgery Patients with renal dysfunction, hold 2 weeks prior to surgery
ulfasalazine	5 hours	Discontinue therapy prior to 1 week before surgery
zathioprine	7.6 hours	
eflunomide	2 weeks	Hold for 6 weeks prior to surgery
lydroxychloroqine	1-2 months	Continue therapy up to and including the day of surgery
iological Response Modifiers		
tanercept	4.3 days	Hold for at least 1.5 weeks prior to surgery
ıfliximab	8-10 days	Hold for 3 weeks prior to surgery
Colimumab Cocilizumab Cocilizumab Cocilizumab Cocilizumab	12-14 days	Hold for 1 month prior to surgery
lituximab	21 days	Hold for 2 months prior to surgery
ioat agents Illopurinol Colchicine Probenecid	1-2 hours 26-32 hours 26-32 hours	Discontinue therapy within 1 week prior to surgery

Patient Optimization

- Systemic or local infection
- Immunosuppressive state
- Uncontrolled Diabetes/hyperglycemia
- Chronic disease (anemia, liver, renal, etc.)
- Malnutrition
- Obesity
- Affective disorders
- Smoking
- Excessive Alcohol consumption
- IV drugs/HIV

Diabetes

Increases risk of infection

• Other complications

Marchant MH et al JBJS 2009

Jamsen E et al Eur J Interrn Med 2010

Mravoic J Diabets Sci Technol 2011

American Diabets Association 2013

CDC Guidelines for SSI Prevention

- Core Section
 - Antimicrobial prophylaxis
 - Glycemic control

Normoth

Tissue

Skin P

S.aure

Surgic

Maintain under 200 mg/dL 10 mmol/L

International Consensus

- 200 mg/dL
- Contraindication in presence of ulcer

Patient Optimization

- Systemic or local infection
- Immunosuppressive state
- Uncontrolled Diabetes/hyperglycemia
- Chronic disease (anemia, liver, renal, etc.)
- Malnutrition
- Obesity
- Affective disorders
- Smoking
- Excessive Alcohol consumption
- IV drugs/HIV

Chronic State

- Renal
- Liver
- Chronic anemia

Olsen M et al JBJS 2008

Greenky M, et al Clin Orthop 2012

HICPAC and CDC Guideline 2013

Viola J et al J Arthroplasty 2015

Anemia

- Increases all time complications
 - Mortality
 - SSI/PJI

Greenky M, et al Clin Orthop 2012 Viola J et al J Arthroplasty 2015

Anemia Rothman Study

- 13,593 TJA
- 2,580 anemic patients
- Multivariate analysis (OR = 2.11)
- Cardiovascular complication 26.5% vs 11.8%
- Infection 4.5% vs 1.12%
- Mortality 0.2% vs 0.08%

Viola J et al J Arthroplasty 2015

Anemia

Chronic conditions

(renal failure, liver disease, etc.)

- Malnurished
- Blood transfusion "immunomodulation"
- Oxygenation/wound healing

Patient Optimization

- Systemic or local infection
- Immunosuppressive state
- Uncontrolled Diabetes/hyperglycemia
- Chronic disease (anemia, liver, renal, etc.)
- Malnutrition
- Obesity
- Affective disorders
- Smoking
- Excessive Alcohol consumption
- IV drugs/HIV

Malnutrition

 Direct correlation with adverse outcome

Gherini S et al Clin Orthop 1993

Lavernia C et al J Am Coll Nutr 1999

Jaberi F et al Clin Orthop 1999

Malnutrition Definition

- WHO definition
- Four components of metabolic syndrome:
 - Albumin (normal 3.5-5.0 g/dL)
 - Pre-albumin (normal 15-35 mg/dL)
 - Transferrin (normal 204-360 mg/dL),
 - Lymphocyte count (normal 800-2000/mm³) [10]

Malnutrition Rothman Study

- Prospective study
- 2,161 TJA
- Overall incidence 8.5%
- Complication 12 vs 2.9% (p<0.0001)
- Hematoma formation, infection, renal, cardiovascular

Huang R et al J Arthroplasty 2013

Paradoxical malnutrition

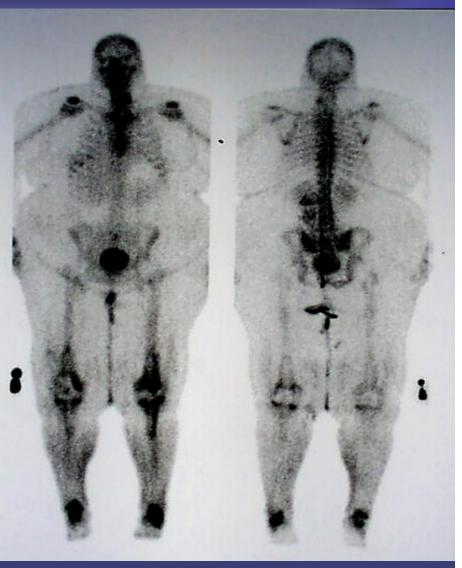
Patient Optimization

- Systemic or local infection
- Immunosuppressive state
- Uncontrolled Diabetes/hyperglycemia
- Chronic disease (anemia, liver, renal, etc.)
- Malnutrition
- Obesity
- Affective disorders
- \blacksquare Smoking
- Excessive Alcohol consumption
- IV drugs/HIV

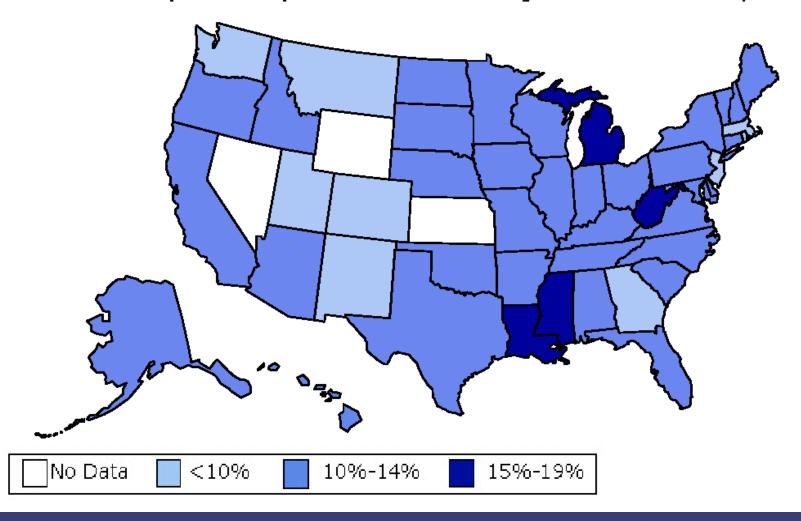
Obesity

Issues

More complications



Obesity



Obesity Trends* Among U.S. Adults BRFSS, 1991

(*BMI ≥30, or ~ 30 lbs overweight for 5'4" woman)

Obesity Trends* Among U.S. Adults BRFSS, 2001 (*BMI ≥30, or ~ 30 lbs overweight for 5'4" woman)

15%-19%

No Data

< 10%

10%-14%

20%-24%

≥25%

Metabolic Syndrome Definition

- WHO definition
- Four components of metabolic syndrome:
 - Obesity (BMI > 30 kg/m^2)
 - Diabetes
 - Hypertension
 - Dyslipidemia

Metabolic Syndrome

Metabolic syndrome has been indicated as a risk factor of morbidity following TJA.

> Parvizi J et al. *The Journal of Arthroplasty*. 2008 Gandhi R et al. *J. Rheumatol*. 2009

Patients with uncontrolled vs. controlled diabetes are at an increased risk of morbidity and mortality following TJA.

Marchant MH et al. J Bone Joint Surg Am. 2009

Complications Parvizi et al JOA 2008

Obesity and TKA Issues

Is there a limit?

International Consensus Meeting

Philadelphia, August 2013

Proceedings of the International

Consensus Meeting on Periprosthetic Joint Infection

No limit determined

Obesity and TJA AAHKS Workgroup

- Literature Review
- Obesity increases risk for complication
- BMI> 40 Kg/m²

Philadelphia

Fattest Population in the Nation

Patient Optimization

- Systemic or local infection
- Immunosuppressive state
- Uncontrolled Diabetes/hyperglycemia
- Chronic disease (anemia, liver, renal, etc.)
- Malnutrition
- Obesity
- Affective disorders
- lacksquare Smoking
- Excessive Alcohol consumption
- IV drugs/HIV

Beware of these Patients

Pain everywhere

Affective disorder



Parvizi's Case

380 lb

5' 1"

Kothman Institute Orthopaedics Thomas Jefferson University

Affective Disorder

Increases incidence of infection

Kiecolt-Glaser J Psychosom Res 2002

Leonard BE. Prog Neuro-Psychopharmacology 2001

Bozic K Clin Orthop 2012

Depression and Infection

- Depression affects immune system
- Inflammatory cytokines (IL-6)
- **ACTH** and cortisol

Kiecolt-Glaser J Psychosom Res 2002

Depression and Infection

- Self neglect (hygiene)
- Malnutrition
- Chronic disease

Parvizi J et al JBJS 2003

Rezapoor M J Arthroplasty 2015

Patient Optimization

- Systemic or local infection
- Immunosuppressive state
- Uncontrolled Diabetes/hyperglycemia
- Chronic disease (anemia, liver, renal, etc.)
- Malnutrition
- Obesity
- Affective disorders
- Smoking
- Excessive Alcohol consumption
- IV drugs/HIV

Smoking and Infection

- Smoking increases the risk of infection
- Heavy smoking (>20 per day)
- Cessation reduces the risk
- 6-8 weeks prior to surgery

Singh J Arth Care Res 2011

Khan LA et al Hip Int J Clin Exp Res 2008

Argintar E et al JAAOS 2012

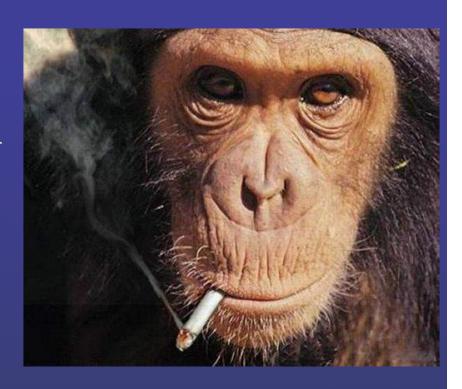
Matar W et al JBJS 2010

Smoking and Infection

- Smoking increases the risk of infection
- Heavy smoking (>20 per day)
- Cessation reduces the risk
- 6-8 weeks prior to surgery

Singh J Arth Care Res 2011

Khan LA et al Hip Int J Clin Exp Res 2008


Argintar E et al JAAOS 2012

Matar W et al JBJS 2010

Metabolic effects are concerning

Most studies find smoking to confer an increased risk of infection or wound complications

Metabolic Effects

- Reduced cutaneous blood flow
- Soft-tissue oxygenation and aerobic metabolism

- Platelet aggregation causing micro-thrombi and decreased perfusion
- Nicotine negatively modulates T-cell function

- Peersman, et al, CORR 2001
 - Retrospective review of 6489 TKA patients, 113 infections (16 superficial, 97 deep)
 - Smoking was a significant risk factor for infection (p=0.01)

- Duchman, et al, JBJS 2015
 - NSQIP database study, 78,191 primary TKA and THA patients
 - 30-day complications
 - Current smokers had a higher rate of wound complications (1.8%) compared with former smokers and nonsmokers (1.3% and 1.1%, respectively; p < 0.001).</p>

- Singh, et al, Arthritis Care and Research2011
 - VASQIP database study, primary THA/TKA patients
 - Current smokers were significantly more likely than never-smokers to have surgical site infections (odds ratio [OR] 1.41, 95% CI 1.16-1.72)

- Moller et al, JBJS(Br) 2003
 - Retrospective review of 825 primary THA/TKA patients
 - Smoking was a significant risk factor for wound complications (23% vs 8%, P < 0.001) and an independent predictor of wound complication (OR 3.2, 95% CI 1.8-6, P = 0.001)
 - Wound complications = hematoma, culture + infection, subfascial collection

Our Data (Unpublished)

- Retrospective
- <u>15,275 patients (17,394 primary TJA)</u>
- Current smokers were significantly more likely than non-smokers to undergo reoperation for infection (1.2% vs. 0.69%, OR 1.8, 95% CI: 1.1-2.9, p=0.02)
- No significant differences were noted between current smokers and former smokers with regards to reoperation for infection (1.24% vs. 0.87%, p=0.33)

Patient Optimization

- Systemic or local infection
- Immunosuppressive state
- Uncontrolled Diabetes/hyperglycemia
- Chronic disease (anemia, liver, renal, etc.)
- Malnutrition
- Obesity
- Affective disorders
- Smoking
- **Excessive Alcohol consumption**
- IV drugs/HIV

Alcohol Consumption and Infection

- Excessive alcohol consumption (>40 units/week)
- Risk of infection/other complications
- Cessation reduces the risk (Tonnesen H et al BMJ 1999)
- 4 weeks prior to surgery

Aggarwal VK J Arthroplasty 2014

Azodi OS JBJS-B 2006

Harris AHJ JBJS 2011

Patient Optimization

- Systemic or local infection
- Immunosuppressive state
- Uncontrolled Diabetes/hyperglycemia
- Chronic disease (anemia, liver, renal, etc.)
- Malnutrition
- Obesity
- Affective disorders
- Smoking
- Excessive Alcohol consumption
- IV drugs/HIV

Drug Abuse and HIV

Risk of infection

(Parvizi J et al J Arthroplasty 2003)

- HIV-positive (14%)
- Drug abuse (25%)
- Both (40%)

Lehman CR J Arthroplasty 2001

HIV and Infection

- CD4 count > 300
- Low viral count

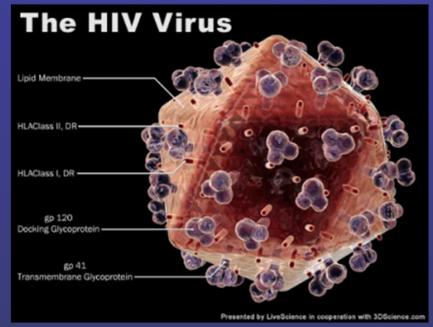
Aggarwal VK et al J Arthroplasty 2014

■ Retroviral therapy positive effect Enayatollahi et al —Pending publication

Human Immunodeficiency Virus and Total Joint Arthroplasty: The Risk for Infection is Reduced

Mohammad Ali Enayatollahi¹ MD Dermot Murphy², Mitchell G. Maltenfort¹PhD Javad Parvizi¹ MD FRCS

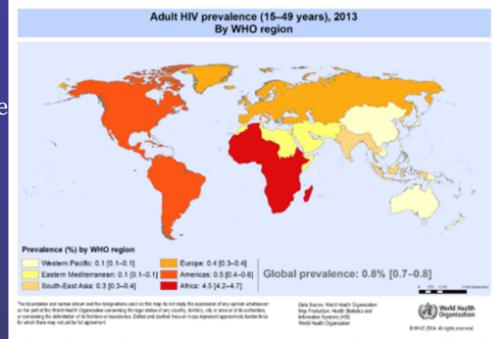
¹Rothman Institute at Thomas Jefferson University, Philadelphia, PA
² Department of Orthopaedics, University of Limerick, Midlands Regional Hospital, Tullamore, Ireland



Epidemiology

- HIV was identified in 1983.
- Its socioeconomic and psychological burden continues to be a great

challenge to global health



Epidemiology

- 39 million people had died of HIV since the beginning of the epidemic
- As of 2013,
 - > 35 million people worldwide
 - >one million in the US

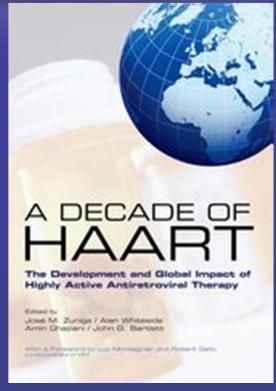
www.who.int/gho/hiv/en/

HIV in IRAN

As of 2013, Estimated number of people (all ages) livingwith HIV 70 000 [47 000-110 000]

http://www.who.int/gho/hiv/en/

- HIV rates have increased by 80% per year for the past decade.
- 75% of those infected are unaware of their status.


Lancet, vol382,2013

Why this study?

- The advent of HAART in 1997changed the nature of HIV infection
- In US, by 2015 >50% of all HIV infections will be >50 Y/O Cumminis et al 2014
- Musculoskeletal complications
 - Osteonecrosis of bone 45-fold
 - Osteopenia and osteoporosis including femoral neck fractures.

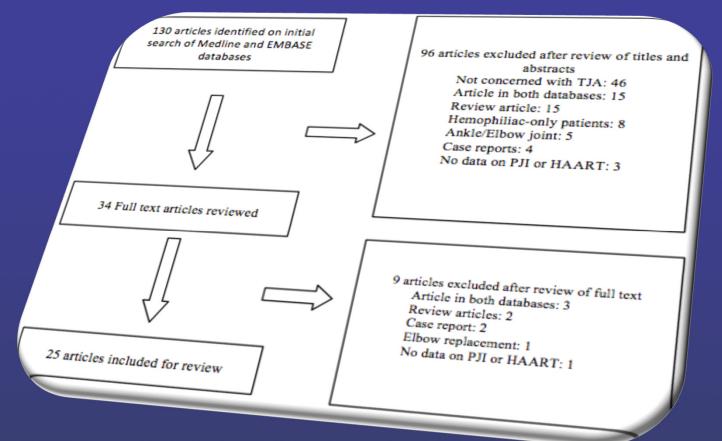
insufficiency fractures

Triant et al 2008

Why this study?

- The demand for TJA in HIV patients is on the rise
- Treatment strategies and outcomes of TJA in HIV patients is controversial
- PJI rate in earlier studies: 50% Swensen et al 2012
 - Prior to HAART era
 - Comorbidities like hemophilia, IVDU

 Hemophilic patients were exposed to HIV through unscreened factor replacements between the years 1979 and 1985.


Present study

- Systematic review
- Study hypotheses:
 - HIV patients without hemophilia have a lower rate of PJI than HIV patients with hemophilia after primary TJA.
 - The use of HAART may reduce the rate of PJI

Our search strategy

Demographics of HIV patients with hemophilia

and the second second						
Study	TJA number	PJI number	patients number	male number	follow up	Mean age (years)
Goddard et al ⁴⁰ 2010	17	1	16	Unclear	9.2 years (2-23)	43 (25-70)
Habermann et al ²² 2008	33	2	41 in study overall	37	81 months (2-14 years)	46 (34-68)
Hicks et al ¹⁶ 2001	91	17	Unclear	Unclear	5.7 years (0.1 - 20.8)	39 (22-60)
Lehman et al ¹⁷ 2001	18	3	14	Unclear	62 months (24-152)	33 (25-48)
Norian et al ⁴¹ 2002	40	4	29	Unclear	110 months (24-246)	33.7 (+/- 8.2)
Thomason et al ⁴² 1999	12	4	12 (not useable)	Unclear	7.5 years	Unclear
Powell et al ⁴³ 2005	30	3	19	19	80 months (2-323)	33 (20-61)
Ragni et al ⁴⁴ 1995	34	8	34 (not useable)	Unclear	Unclear	36 (+/- 3.1)
Rodriguez et al ⁴⁵ 2011	21	2	21	Unclear	8.5 years (1-13)	36.5 (24- 52)
Rodriguez et al ⁴⁶ 2007	19	1	19	Unclear	7.5 years (1-10)	31 (24-42)
Unger et al ⁴⁷ 1995	26	0	15	Unclear	6.4 years (1-9)	33 (25-42)
TOTAL	341	45				

Demographics of HIV-infected patients without hemophilia

Study	TJA number	PJI number	patients number	male nubmer	Follow up	Mean age (years)
Capogna et al ²¹ 2013	69	3	57	33	609 days	44.8
Chokotho et al ³¹ 2013	15	0	12	Unclear – HIV patients not separated	Unclear	47.1 (not useable)
Cummins et al ⁴ 2014	8	0	7	3 (Not useable as operations not clear)	25 months (1-68 months)	35 (not useable)
Graham et al ³² 2014	43	0	29	19	3 years, 6 months (5 months – 8 years and 2 months)	47 years, 7 months (21 – 59 + 5 months)
Yoo et al ³³ 2010	5	0	3	3	16.6 months (4- 37 months)	38.6 (not separated by operation)
Lin et al ²⁵ 2014	22	2	20	20	4.6 years (2-8.6 years)	49 (+/- 17.8)
Lubega et al ¹⁸ 2009	18	0	18	Unclear	Unclear	52 (not useable)
Mahoney et al ³⁴ 2005	54	1	40	31	2.3 years (1-7 years)	44.4 (+/- 9.3)
Snir et al ³⁵ 2014	41	1	31	22	33 months (4-116)	49.6 (32- 75)

Tornero et al ³⁶ 2012	18	0	13	11	3.3 years (+/- 2.5)	44.3 (+/- 9.1)
Wang et al ³⁷ 2012	8	0	5	Unclear	38.6 months (4- 84)	44.5 (36- 54)
Falakassa et al ³⁸ 2014	32	0	24	17	14 months (1.5 - 60)	50 (31-74)
Issa et al ³⁹ 2013	44	2	34	23	7 years (4- 11 years)	48 (Range 34-80)
Lehman et al ¹⁷ 2001	4	0	na	na	Unclear	Unclear
TOTAL	381	9	293	71.3%		

Incidence of PJI in HIV patients with and without HAART

	Number of	Number of	Total number of	
Author	PJI/number of	PJI/number of	PJI/total number	
Autiloi	TJA on HAART	TJA not on	of TJAs (%)	
	(%)	HAART (%)		
Capogna et al. ⁹	2/54 (3.7)	1/15 (6.7)	3/69 (4.3)	
Chokotho et al. ²³	0/15 (0)	0/0 (0)	0/15 (0)	
Cummins et al. ⁸	0/8 (0)	0/0 (0)	0/8 (0)	
Graham et al. ⁷	0/43 (0)	0/0 (0)	0/43 (0)	
Issa et al. ⁴⁶	2/44 (4.5)	0/0 (0)	2/44 (4.5)	
Yoo et al. ⁴⁰	0/5 (0)	0/0 (0)	0/5 (0)	
Lin et al. ³⁴	2/21 (9.5)	0/1 (0)	2/22 (9)	
Snir et al. ⁴²	1/41(2.4)	0/0 (0)	1/41 (2.4)	
Tornero et al. 43	0/18 (0)	0/0 (0)	0/18 (0)	

Statistics

- conventional meta-analysis with an offset of 0.5
- "lme4" package in the R statistical analysis platform (R Foundation for Statistical Computing, Vienna, Austria)

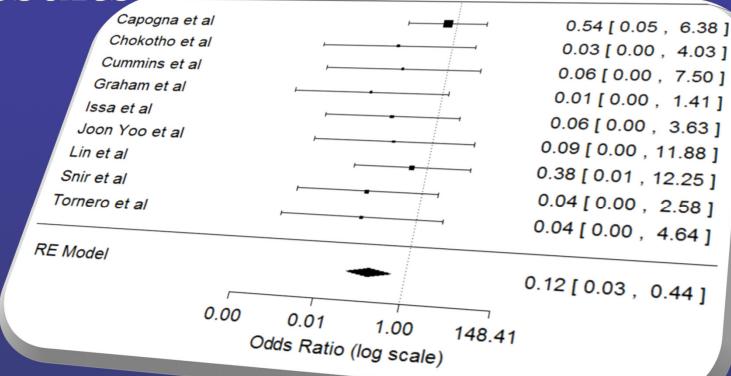
Results

HIV WITHOUT HEMOPHILI A	381	9	46.9	1.5mo-11y	71.3
HIV + HEMOPHILI A	341	45	38.1	1-26 y	>90
	722	P<0.0001			

Results

- The rate of PJI in HIV-only group was 2.14% (95% CI 1.02%-4.53%).
- The rate of PJI in the HIV and hemophilia group was 11.88% (95% CI: 7.82%-17.63%).
- This difference was statistically significant (p<0.0001) with an odds ratio for hemophilia of 6.17 (95% CI: 2.68-14.23).

Results


HAART was associated with fewer infections overall, with an odds ratio of 0.12 (95% CI: 0.03-0.44)

Effect of HAART on the rate of PJI

Results

Concerns

Post op. morbidity and mortality in HIV patients is significantly related to:

- Malnourishment
- Wight loss
- Renal diseases
- Fluid imbalance

Lin et al 2013

Concerns

Safe thresholds for CD4 and Viral load need to be determined.

CD4 < 200 in trauma patients is associated with increased complications

Guild et al 2012

Limitations

- All studies were retrospective
- Demographics were insufficient
- Inconsistent patient-level data on CD4, viral load, and other comorbidities

Conclusion

Rates of PJI after primary TJA in patients with HIV-only are not as high as those in patients with both HIV and hemophilia

 HAART and optimization of underlying comorbidities has appeared to lower the rate of PJI

Accepted as a poster presentation for the 2016 AAOS Annual Meeting 2016 Poster ID #p052

THANK YOU

HIV and PJI

Human Immunodeficiency Virus and Total Joint Arthroplasty: The Risk for Infection is Reduced

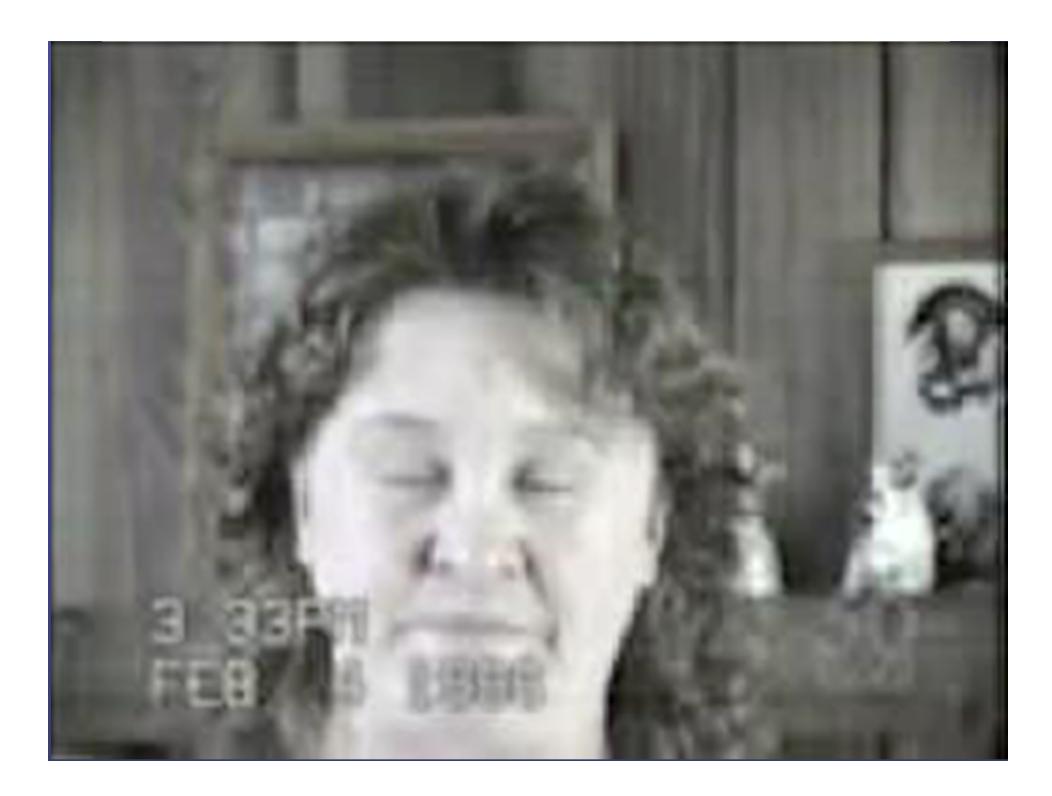
Enayatollahi MA, Murphy D, Maltenfort MG, Parvizi J. J Arthroplasty 2016

Beware of these Patients

Pain everywhere

Affective disorders!!

Numerous previous operations!!



Do Not Operate on

- 40 year old comes with parents
- More than 5 allergies including allergy to water
- Sun glasses in the office
- Bow-tie

