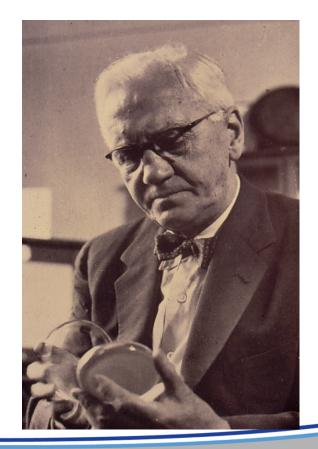
## The Role of Surgeons in Antibiotic Stewardship

#### Donald E. Fry, M.D., F.A.C.S.

Adjunct Professor of Surgery Northwestern University Feinberg School of Medicine

Emeritus Professor of Surgery University of New Mexico School of Medicine

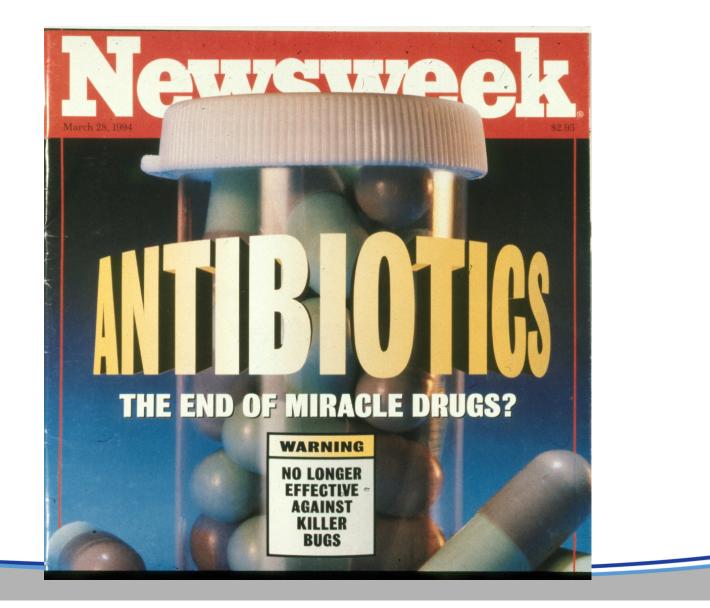

Editor-in-Chief Surgical Infections

## Disclosures

- Becton Dickinson: Speakers program (honoraria)
- IrriMax Corporation: Consultant (honoraria); Research Funding
- Prescient Surgical Corporation: Consultant (stock options)
- Eupraxia Corporation: Consultant (honoraria)
- Surgical Infections (Journal): Editor-in-Chief (Independent Contractor)

#### **Discovery of Penicillin**

- Alexander Fleming discovered Penicillin in 1929.
- The introduction of antibiotics into clinical practice(early 1940s) raised great hopes in the treatment of bacterial infection.
- In surgery, the prospects of using antibiotics for prevention was immediately recognized as a possibility.




## **Discovery of Sulfanilamide**

- Discovered Prontosil in 1931.
- Published results in 1935
- Treated patients with streptococcal and staphylococcal infections
- Received the Nobel Prize in 1939.

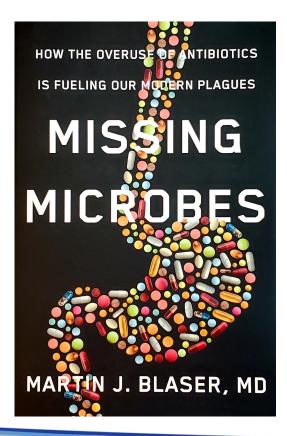


Gerhard Domagk (1895-1964)



## Antimicrobial Resistance: Arrival of the Post-Antibiotic Era

#### Why has resistance emerged?


- Promiscuous use of antibiotics(e.g., preventive antibiotics)
- Failure to de-escalate combination therapy of empirical choices.
- Inappropriate antibiotic therapy
- Patient expectations and demands for antibiotic therapy
- Prolonged administration when infection does exist
- Poultry industry

**RESULT:** Pan-Resistance of Pathogens to all available antibiotics

Four Horsemen of the Microbial Apocalypse



## Other Potential Consequences of Antibiotics



- •Asthma
- •Allergies
- •Obesity
- •Type-2 Diabetes
- Reflux Esophagitis
- •C. difficile Infection
- Oncogenesis

### Antibiotic Stewardship Programs



# <section-header><section-header><text><text><list-item><list-item><section-header>

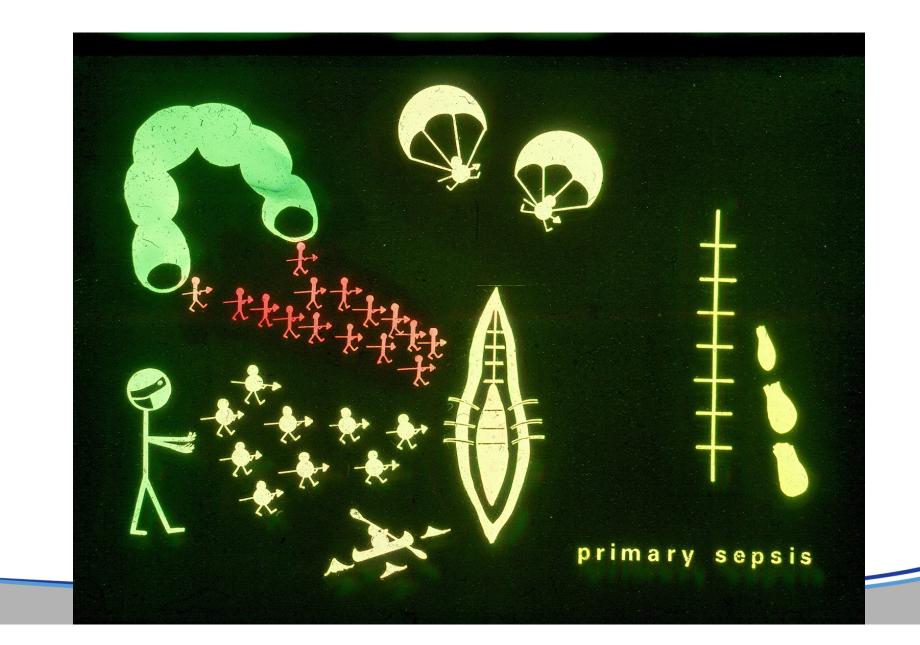
A UNIVERSITY OF MARYLAND STUDY SHOWED ONE ANTIBIOTIC STEWARDSHIP PROGRAM SAVED A TOTAL OF \$17 MILLION OVER EIGHT YEARS



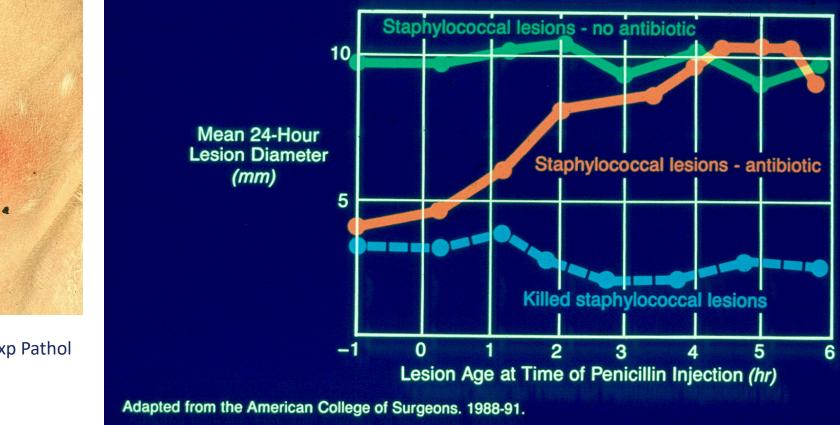
ANTIBIOTIC STEWARDSHIP HELPS IMPROVE PATIENT CARE AND SHORTEN HOSPTIAL STAYS, THUS BENEFITING PATIENTS AS WELL AS HOSPITALS



## Antibiotic Stewardship in Surgery


#### **Goals**

- Avoid Unnecessary Antibiotic Use
- Reduce Resistance Pressure
- Reduce Unnecessary Costs
- Reduce Antibiotic-Associated Morbidity


#### **Objectives**

- Appropriate Preventive Antibiotic Use
- Effective Source Control of the Infection
- Avoid delays in initiation
- Avoid Excessive duration
- Better use of non-antibiotic infection management strategies

## Appropriate Antibiotic Use to Prevent Surgical Site Infection



#### Timing of Penicillin Administration with Respect to Bacterial Inoculation

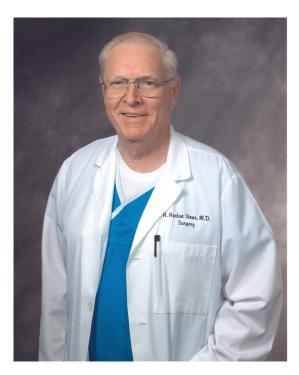




Miles et al: Brit J Exp Pathol 1957

12

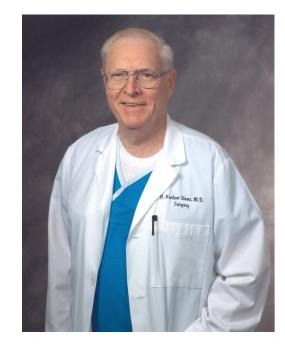
#### Prevention of Surgical Site Infection Use of Preventive Antibiotics (cephaloridine): GI Surgery


| 101            | 98                          |
|----------------|-----------------------------|
| 54             | 50                          |
| 6              | 29                          |
| 7%             | 30%*                        |
| (P < .05)*     |                             |
| yor, Surgery 1 | .969; 66:97                 |
|                | 54<br>6<br>7%<br>(P < .05)* |



#### Preventive Systemic Antibiotics: Importance of Timing(Cefazolin)

|              | 8-12Hrs Preop | <u>1Hr Preop</u> | <u>1-4Hrs Postop</u> | None |
|--------------|---------------|------------------|----------------------|------|
| Gastri       | c 5%          | 4%               | 17%                  | 22%  |
|              |               |                  |                      |      |
| Biliary      | 3%            | 0%               | 9%                   | 11%  |
|              |               |                  |                      |      |
| <u>Colon</u> | 6%            | 6%               | 15%                  | 16%  |
| Total        | 4%            | 3%               | 14%                  | 15%  |


(Stone, Ann Surg 1976; 184:443)



#### Preventive Systemic Antibiotics Postoperative Administration(Cefamandole)

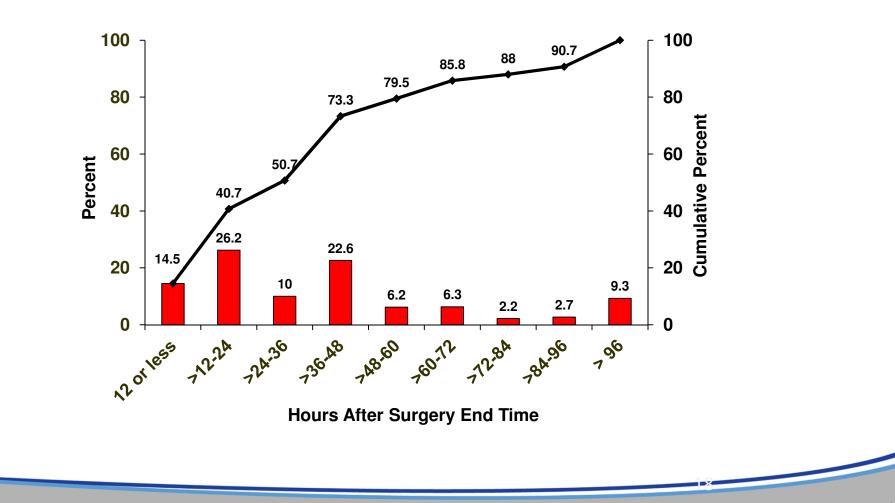
|              | Preop Drug       | Preop Drug          |
|--------------|------------------|---------------------|
| :            | + 5 Days of Drug | + 5 Days of Placebo |
| Gastric      | 0%               | 0%                  |
| Biliary      | 0%               | 6%                  |
| <u>Colon</u> | 11%              | 9%                  |
| Total        | 5%               | 6%                  |

(Stone, Ann Surg 1979; 189:691)

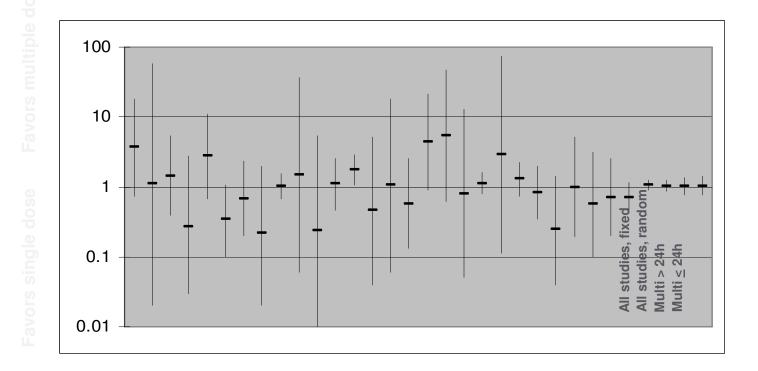


#### Prevention of SSIs

#### **Surgical Infection Prevention Project**


- •Administration of antibiotic within 60 min of skin incision.
- •Antibiotic consistent with recommended choices.
- •Antibiotic should not be continued beyond 24 hours after completion of the procedure.

Bratzler et al Arch Surg 2005, 140:174-82.


#### Surgical Infection Prevention Performance Stratified by Surgery

| Surgery (N)            | Antibiotic within 1<br>hour<br>% | Correct<br>Antibiotic<br>% | Antibiotic Stopped<br>within 24 hours<br>% |
|------------------------|----------------------------------|----------------------------|--------------------------------------------|
| Cardiac (7,861)        | 45.3                             | 95.8                       | 34.3                                       |
| Vascular (3,207)       | 40.0                             | 91.9                       | 44.8                                       |
| Hip/knee (15,030)      | 52.0                             | 97.4                       | 36.3                                       |
| Colon (5,279)          | 40.6                             | 75.9                       | 41.0                                       |
| Hysterectomy (2,756)   | 52.4                             | 90.8                       | 79.1                                       |
| All Surgeries (34,133) | 47.6                             | 92.9                       | 40.7                                       |

National SURGICAL INFECTION PREVENTION Medicare Quality Improvement Project



Single vs Multiple Dose Surgical Prophylaxis: Systematic Review



McDonald. Aust NZ J Surg 1998;68:388

| Reference                             | Year | Antibiotic                                 | Odds ratio (95% c.i.)<br>0.01 0.1 1 10 100 | Proportion with surgical wound infection |
|---------------------------------------|------|--------------------------------------------|--------------------------------------------|------------------------------------------|
| Carr et al.68                         | 1984 | Metronidazole(1) versus (2-4)              |                                            | 7 of 22 versus 11 of 68                  |
| Aberg and Thore <sup>69</sup>         | 1991 | Cefuroxime + metronidazole(1) versus (3)   | <b></b>                                    | 2 of 19 versus 1 of 29                   |
| Corman et al. <sup>27</sup>           | 1993 | Cefoxitin(1) versus (4)                    |                                            | 2 of 31 versus 0 of 27                   |
| Kow <i>et al.</i> <sup>70</sup>       | 1995 | Cefoxitin(1) versus (3)                    |                                            | 10 of 73 versus 8 of 81                  |
| Jensen <i>et al.</i> <sup>25</sup>    | 1990 | Ampicillin + metronidazole(1) versus (3)   | <b></b>                                    | 14 of 100 versus 12 of 104               |
| Juul et al. <sup>71</sup>             | 1987 | Ampicillin + metronidazole(1) versus (4)   |                                            | 9 of 149 versus 8 of 145                 |
| Hall <i>et al</i> . <sup>31</sup>     | 1989 | Latamoxef(1) versus (8)                    |                                            | 12 of 119 versus 10 of 126               |
| Bates et al. <sup>72</sup>            | 1992 | Co-amoxiclav(1) versus (3)                 | <b>-</b>                                   | 23 of 113 versus 17 of 111               |
| Grundmann et al. <sup>73</sup>        | 1987 | Mezlocillin + metronidazole(1) versus (3)  | <b></b>                                    | 4 of 77 versus 4 of 77                   |
| Mendel et al.74                       | 1987 | Mezlocillin + metronidazole(1) versus (9)  |                                            | 2 of 54 versus 1 of 46                   |
| Bittner <i>et al.</i> <sup>75</sup>   | 1989 | Mezlocillin + metronidazole(1) versus (7)  |                                            | 6 of 46 versus 3 of 44                   |
| Cuthbertson et al.76                  | 1991 | Ticarcillin/clavulanic acid(1) versus (2)  |                                            | 16 of 146 versus 17 of 132               |
| Kow <i>et al.</i> <sup>70</sup>       | 1995 | Cefotaxime + metronidazole(1) versus (3)   |                                            | 7 of 84 versus 9 of 81                   |
| Goransson et al.77                    | 1984 | Doxycycline(1) <i>versus</i> (4)           |                                            | 1 of 53 versus 2 of 49                   |
| Wenzel et al. <sup>78</sup>           | 1985 | Gentamicin + metronidazole(1) versus (3)   |                                            | 6 of 30 versus 10 of 30                  |
| Lohr et al. <sup>79</sup>             | 1984 | Cefotaxime(1) versus (3)                   |                                            | 4 of 30 versus 3 of 30                   |
| Tuchmann <i>et al</i> . <sup>80</sup> | 1988 | Piperacillin + metronidazole(1) versus (3) |                                            | 4 of 61 <i>versus</i> 5 of 63            |
|                                       |      | Fa                                         | vours Favo                                 | ours                                     |

#### Song and Glenny: Brit J Surg 1998; 85:1232

Fig. 5 Effect of single *versus* multiple doses of antibiotic in preventing surgical wound infection in colorectal surgery. Values in parentheses are number of doses. c.i., Confidence interval

single

dose

multiple

doses

#### Preventive Antibiotics Why Postoperative administration does not work

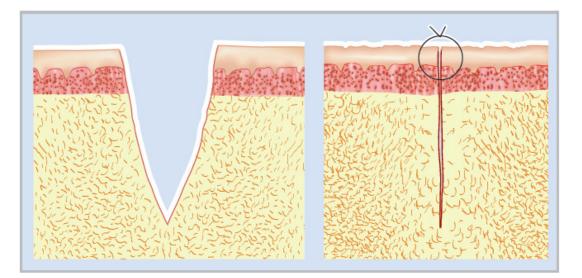
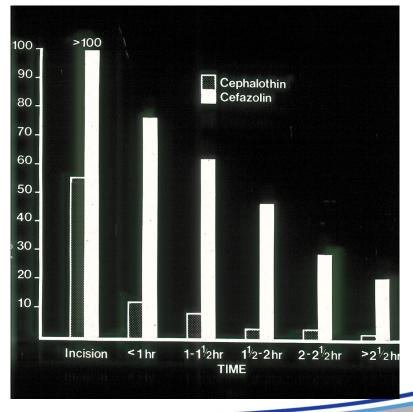
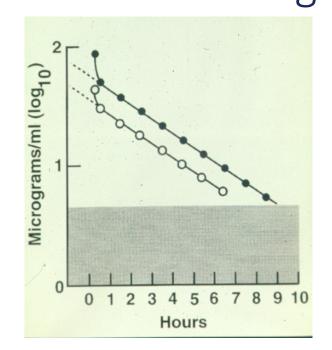




Figure 4.3 The fibrin layer on the wound interface and the presence of the fibrin matrix in the closed wound. Note the "halo" of edema about the closed wound and the potential consequences of increased tissue hydrostatic pressure and ischemia of the interface.


#### Systemic Preventive Antibiotics Elimination Half-life Counts!

- Cephalothin is gone from the wound in 90 min from time of administration.
- Cefazolin in therapeutic concentrations beyond 2½ hours.

(Fry, Arch Surg 1990; 125:1490)



## Preventive Antibiotics in Trauma Effect of dosing



Ericsson et al: J Trauma 1989; 29:1356

• Mean age: 37 years

- Dose of Amikacin: 7.5 10 mg/kg
- All had normal creatinine
- $T_{1/2}$  Estimated = 3.3 hrs
- $T_{1/2}$  Measured = 1.9 hrs
- $V_d$  Estimated = 14.3 L
- $V_d$  Measured = 20.9 L

|                       | <u>&lt; 10mg/kg</u> | <u>&gt;10 mg/kg</u> | <u>P=</u>   |
|-----------------------|---------------------|---------------------|-------------|
| All patients          | 21/87 (24%)         | 5/63 ( 8%)          | <0.01       |
| No Colon              | 12/57 (21%)         | 1/48 ( 2%)          | <0.005      |
| + Colon               | 9/30 (30%)          | 4/15 (27%)          | <b>N.S.</b> |
| High Blood Loss (>6L) | 16/43 (37%)         | 3/27 (11%)          | <0.02       |
| ISS > 20              | 11/32 (34%)         | 1/18 ( 6%)          | <0.025      |
| ISS < 20              | 10/55 (18%)         | 4/45 ( 9%)          | N.S.        |

## Preventive Antibiotics in Surgery Coverage of MRSA?

| Randomized trial in cardiovascular               | cefazolin prophylaxis for cardiovascular operations         |                         |                        |  |
|--------------------------------------------------|-------------------------------------------------------------|-------------------------|------------------------|--|
| procedures.<br>An environment with high rates of |                                                             | Vancomycin<br>(n = 452) | Cefazolin<br>(n = 433) |  |
| MRSA infection                                   | Superficial incisional SSI (No.)                            |                         |                        |  |
|                                                  | All                                                         | 25 (5.5%)               | 20 (4.6%)              |  |
| Randomization of vancomycin vs.                  | Donor site                                                  | 7 (1.5%)                | 10 (2.3%)              |  |
| cefazolin                                        | Chest                                                       | 18 (4%)                 | 10 (2.3%)              |  |
| Overall SSI rates were the same.                 | Deep incisional SSI (No.)                                   |                         |                        |  |
| Cefazolin-associated infections had              | All                                                         | 12 (2.6%)               | 7 (1.6%)               |  |
|                                                  | Donor site                                                  | 2 (0.4%)                | 2 (0.4%)               |  |
| high frequency of MRSA                           | Chest                                                       | 10 (2.2%)               | 5 (1.2%)               |  |
| Vancomycin-associated infections had             | Organ-space SSI (No.)                                       |                         |                        |  |
| high frequency of MSSA                           | All                                                         | 6 (1.3%)                | 12 (2.7%)              |  |
| Ingli hequency of MSSA                           | Mediastinitis                                               | 5 (1.1%)                | 7 (1.6%)               |  |
|                                                  | Osteomyelitis                                               | 0                       | 3 (0.7%)               |  |
|                                                  | Endocarditis                                                | 1 (0.2%)                | 2 (0.4%)               |  |
|                                                  | Pericarditis                                                | 0                       | 0                      |  |
|                                                  | Any SSI (No.)                                               | 43 (9.5%)               | 39 (9.0%)              |  |
| Finkelstein et al: JTCVS, 2002;123:326           | Duration of postoperative<br>hospitalization (d, mean ± SD) | 8.7 ± 8                 | 9.3 ± 11               |  |
|                                                  | Deaths (No.)                                                | 13 (2.9%)               | 14 (3.2%)              |  |
|                                                  | No differences were significant at P ≤ .0                   | 5.                      |                        |  |

TABLE 2. Outcomes of 885 patients receiving vancomycin or

### Preventive Antibiotic Stewardship Summary

- No Antibiotics administered after wound closure
- Use longer half-life antibiotics and redose at two half-life intervals for longer operation.
- Administer the drugs within < 60 minutes before incision.
- Increase the administration dose for emergency/trauma cases
- Monitor home antibiotic following Outpatient/Ambulatory Surgery

#### **Antibiotic Choice**

- SCJP choices are appropriate for uncomplicated patients.
- Beware of the Patient with adverse colonization!
  - 90-day prior hospitalization
  - 90-day prior antibiotic therapy
  - Hemodialysis Patient
  - Nursing Home Patients
  - History of Prior Surgical Site Infections
  - Known MRSA carrier

#### The Best Antibiotic Stewardship in Surgery in avoiding preventable Infections!


### **Effective Source Control of Infection**



#### Inadequate Source Control Fix the hole; Debride dead tissue; Drain the Pus!

#### **Gross Contamination/Pus**

- Very large bacterial inoculum (> 10<sup>7</sup> bacteria/ml)
- Inoculum Effect neutralizes anticipated antimicrobial activity
- Environment is anaerobic, acidic, protein-rich.
- Fibrin-entrapped bacteria not affected by systemic drugs
- Polymicrobial and Synergistic



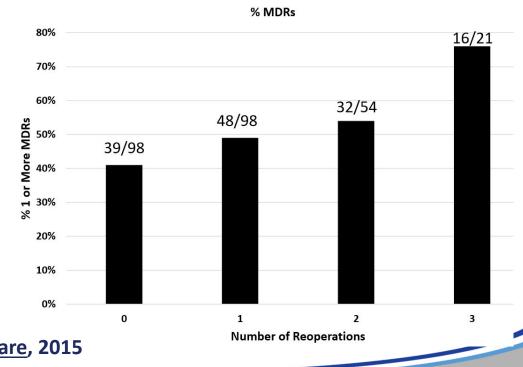
#### Inadequate Source Control

•Tellor (Mazuski), Surg Infect 2015

# Significant Clinical Outcome Predictors

- N= 108 patients
- All with positive blood cultures from an intraabdominal infection
- Median APACHE II = 20
- 72% Mechanically ventilated
- Overall Mortality = 28%

TABLE 9. MULTIVARIATE LOGISTIC REGRESSION ANALYSIS


| Variable                  | AOR, 95% CI      | р     |
|---------------------------|------------------|-------|
| Inadequate source control | 7.46, 2.08-26.32 | 0.002 |
| Inappropriate antibiotics | 3.86, 1.28-11.64 | 0.016 |
| APACHE II score           | 0.93, 0.87- 1.01 | 0.084 |
| (1 point increments)      |                  |       |

Hosmer-Lemeshow p=0.943, AUROC=0.776. AOR=adjusted odds ratio; CI=confidence interval; APACHE= Acute Physiology and Chronic Health Evaluation.

#### Inadequate Source Control Promotes Multidrug Resistant (MDR) Pathogens

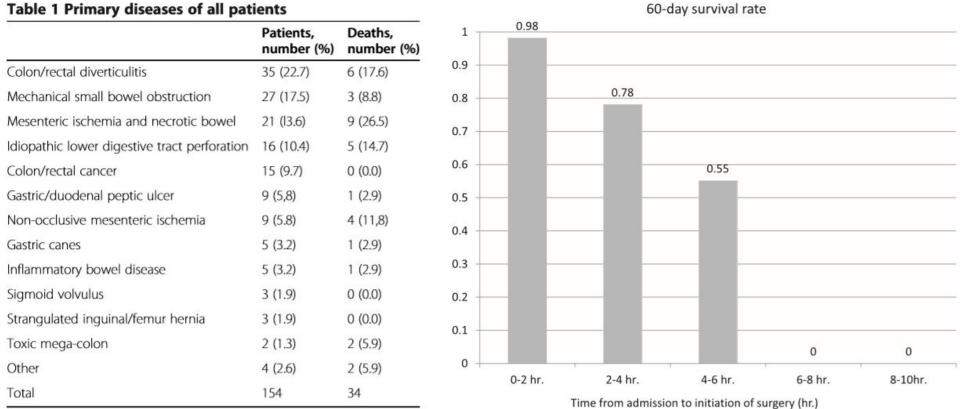
- 220 ICU Patients: Initial operation for IAI
- Reoperated and non-reoperated patients had similar Pathogens at initial cultures.
- Initial antibiotic profiles were similar between no reoperation and reoperation groups.

**Conclusion:** Failed source control promotes resistant pathogens.




Montravers P, et al: Critical Care, 2015

#### **Delay in Surgical Intervention**


Buck DL: Brit J Surg, 2013. Perforated Ulcers.

- Danish Clinical Registry of Emergency Surgery (N=2,668)
- 30-day mortality measured by number of hours from admission to OR.
- Mean age = 70 years
- ASA ≥ 3 in 45.6%
- Alcohol Abuse = 18.9%
- Tobacco Abuse = 61.3%
- 30 Day Morality = 26.5%
- Death rate increase 2% per hour of delay.



#### Delay in Source Control: IAI Azuhata T, et al: Crit Care 2014

#### Table 1 Primary diseases of all patients



## Prompt Initiation of Antibiotics for Established Infection

#### Delay in Initiation of Antibiotic Therapy Barie et al:Surg Infect, 2005

#### Patient Population:

- 334 ICU Surgical Patients
- •40% Pneumonia
- •30% IAI
- •10% Soft Tissue
- •30.8% Deaths

|                            |            | 95.0  |       |         |
|----------------------------|------------|-------|-------|---------|
| Parameter                  | Odds ratio | Lower | Upper | p value |
| Age, years                 | 1.028      | 1.001 | 1.055 | 0.04    |
| APACHE III                 | 1.025      | 1.01  | 1.04  | 0.001   |
| Peak temperature           | 1.108      | 0.62  | 1.978 | 0.729   |
| ICU day peak temperature   | 1.088      | 0.979 | 1.208 | 0.116   |
| Days of antibiotics        | 1.135      | 0.997 | 1.292 | 0.056   |
| Time to Abx administration | 1.021      | 1.003 | 1.038 | 0.02    |
| Time to Abx comfirmation   | 0.996      | 0.99  | 1.003 | 0.266   |
| Male gender                | 0.482      | 0.228 | 1.019 | 0.056   |
| Appropriateness Abx 1      | 1.623      | 0.776 | 3.391 | 0.198   |
| Appropriateness Abx 2      | 0.923      | 0.824 | 1.033 | 0.162   |

TABLE 5. BINARY LOGISTIC REGRESSION ANALYSIS (DEPENDENT VARIABLE, MORTALITY)

Abx, antibiotic.

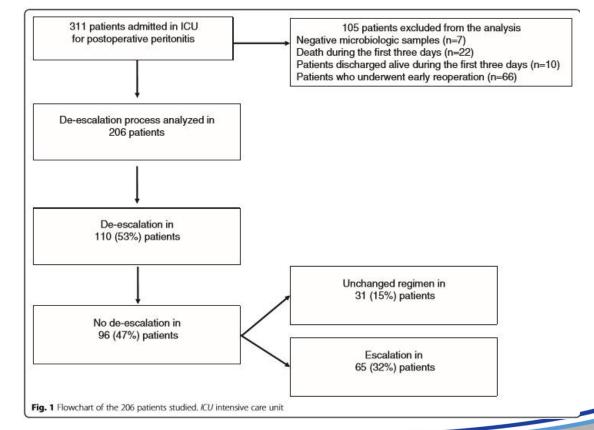
Model  $\chi^2$  8.038 (good discrimination), Hosmer-Lemeshow goodness of fit p = 0.441 (good calibration).

# Delay in Initiation of Antibiotics

#### Surviving Sepsis Campaign Database: Ferrer et al, Crit Care Med, 2015

| Patient                    | Antibiotic Timing (Hr) |              |              |            |            |            |            |         |
|----------------------------|------------------------|--------------|--------------|------------|------------|------------|------------|---------|
| Characteristic,<br>n (%)   | 0.0-1.0                | 1.0-2.0      | 2.0-3.0      | 3.0-4.0    | 4.0-5.0    | 5.0-6.0    | > 6.0      | -<br>P' |
| ite of infection           |                        |              |              |            |            |            |            |         |
| Pneumonia                  | 2,388 (50.5)           | 2,308 (50.2) | 1,398 (46.3) | 729 (42.0) | 430 (41.5) | 252 (39.4) | 982 (43.9) | < 0.001 |
| Urinary tract<br>infection | 1,076 (22.8)           | 1,332 (29.0) | 950 (31.5)   | 518 (29.9) | 273 (26.3) | 164 (25.6) | 444 (19.9) | < 0.001 |
| Abdominal                  | 914 (19.3)             | 738 (16.1)   | 545 (18.1)   | 387 (22.3) | 225 (21.7) | 146 (22.8) | 550 (24.6) | < 0.001 |
| Meningitis                 | 101 (2.1)              | 57 (1.2)     | 39 (1.3)     | 23 (1.3)   | 16 (1.5)   | 5 (0.8)    | 36 (1.6)   | 0.002   |
| Skin                       | 294 (6.2)              | 294 (6.4)    | 212 (7.0)    | 119 (6.9)  | 66 (6.4)   | 35 (5.5)   | 113 (5.1)  | 0.040   |
| Bone                       | 46 (1.0)               | 57 (1.2)     | 48 (1.6)     | 28 (1.6)   | 7 (0.7)    | 9 (1.4)    | 37 (1.7)   | 0.075   |
| Wound                      | 206 (4.4)              | 242 (5.3)    | 124 (4.1)    | 78 (4.5)   | 50 (4.8)   | 20 (3.1)   | 95 (4.3)   | 0.080   |
| Catheter                   | 169 (3.6)              | 157 (3.4)    | 106 (3.5)    | 75 (4.3)   | 37 (3.6)   | 29 (4.5)   | 88 (3.9)   | 0.596   |
| Endocarditis               | 46 (1.0)               | 42 (0.9)     | 33 (1.1)     | 15 (0.9)   | 14 (1.4)   | 11 (1.7)   | 26 (1.2)   | 0.548   |
| Device                     | 54 (1.1)               | 51 (1.1)     | 43 (1.4)     | 24 (1.4)   | 16 (1.5)   | 9 (1.4)    | 22 (1.0)   | 0.704   |
| Other infection            | 260 (9.7)              | 528 (11.5)   | 399 (13.2)   | 216 (12.5) | 145 (14.0) | 95 (14.8)  | 337 (15.7) | < 0.001 |

#### Delay in Initiation of Antibiotics Surviving Sepsis Campaign Database: Ferrer et al, Crit Care Med, 2015


|                  | Time to<br>Antibiotics (Hr) | OR•  | 95% CI    | p       | Probability of<br>Mortality (%) <sup>®</sup> | 95% CI    |
|------------------|-----------------------------|------|-----------|---------|----------------------------------------------|-----------|
|                  | - 0-1°                      | 1.00 |           |         | 24.6                                         | 23.2-26.0 |
|                  | 1-2                         | 1.07 | 0.97-1.18 | 0.165   | 25.9                                         | 24.5-27.2 |
|                  | 2-3                         | 1.14 | 1.02-1.26 | 0.021   | 27.0                                         | 25.3-28.7 |
|                  | 3-4                         | 1.19 | 1.04-1.35 | 0.009   | 27.9                                         | 25.6-30.1 |
|                  | 4-5                         | 1.24 | 1.06-1.45 | 0.006   | 28.8                                         | 25.9-31.7 |
|                  | 5−6                         | 1.47 | 1.22-1.76 | < 0.001 | 32.3                                         | 28.5-36.2 |
| ntibiotic, hours | >6                          | 1.52 | 1.36-1.70 | < 0.001 | 33.1                                         | 30.9-35.3 |

## De-escalate Antibiotic Therapy with Culture Results

# De-escalation of Antibiotic Therapy: Post-operative Intraabdominal Infection(IAI)

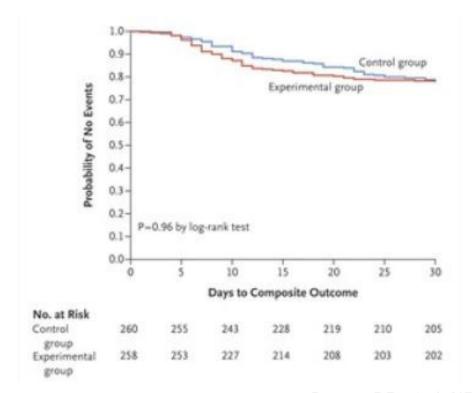
- 13-year study of 311 consecutive ICU patients with post-operative IAI
- Antibiotics were a clinical choice
- De-escalation was also a clinical decision
- De-escalation was evaluated on Median day 3 of treatment.
- No evaluation of adequacy of Source Control

Montravers et al: Critical Care, 2016.



### De-escalation of Antibiotic Therapy: Post-operative Intraabdominal Infection(IAI)

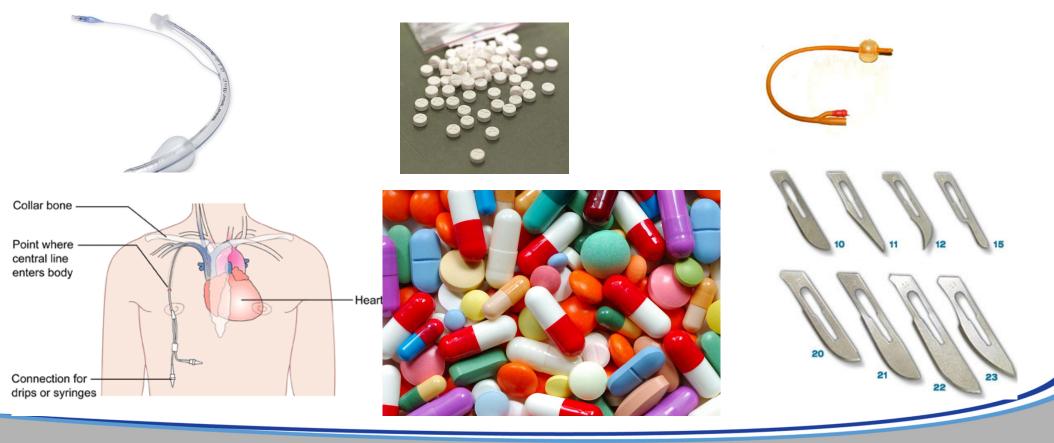
Survival (%) Determinants of De-escalation: 100 Adequate Empirical Choice Use of Vancomycin ۲ Use of Carbapenem • Use of Aminoglycoside ٠ 75 -**Risk Factors for No De-escalation: Multidrug Resistant Bacteria** Non-fermenting Gram Negatives ۰ 50 Enterococcus??? • **Risk Factors for 28-day Deaths:** De-escalation No change **Positive fungal Culture** ۲ Escalation **Elevated SOFA score** 25 Age > 69 years Log-rank test P-value = 0,176 De-escalation did not adversely affect 28-day outcomes 0 Escalation was of NO SURVIVAL BENEFIT 15 20 25 5 10 28 0 Montravers et al: Critical Care, 2016. Times (days)


# Avoid Excessive Duration of Antibiotic Therapy

# Excessive Duration of Antibiotic Therapy

| Control<br>Group<br>(N = 260) | Experimental<br>Group<br>(N = 257)                                                          | P Value                                                                                                                                                       |
|-------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 58 (22.3)                     | 56 (21.8)                                                                                   | 0.92                                                                                                                                                          |
| 23 (8.8)                      | 17 (6.6)                                                                                    | 0.43                                                                                                                                                          |
| 36 (13.8)                     | 40 (15.6)                                                                                   | 0.67                                                                                                                                                          |
| 2 (0.8)                       | 3 (1.2)                                                                                     | 0.99                                                                                                                                                          |
|                               |                                                                                             |                                                                                                                                                               |
| 15.1±0.6                      | $8.8 \pm 0.4$                                                                               | <0.001                                                                                                                                                        |
| 15.1±0.5                      | 10.8±0.4                                                                                    | <0.001                                                                                                                                                        |
| 19.0±1.0                      | 18.5±0.5                                                                                    | 0.66                                                                                                                                                          |
|                               | Group<br>(N = 260)<br>58 (22.3)<br>23 (8.8)<br>36 (13.8)<br>2 (0.8)<br>15.1±0.6<br>15.1±0.5 | Group<br>(N = 260)Group<br>(N = 257)58 (22.3)56 (21.8)23 (8.8)17 (6.6)36 (13.8)40 (15.6)2 (0.8)3 (1.2)15.1 $\pm$ 0.68.8 $\pm$ 0.415.1 $\pm$ 0.510.8 $\pm$ 0.4 |

#### Sawyer RG: NEJM, 2015


## Excessive Duration of Antibiotic Therapy



| Subgroup                    | No. of<br>Patients | Days of Antibiotic<br>Therapy   | Proportion with Composite Outcome     |
|-----------------------------|--------------------|---------------------------------|---------------------------------------|
|                             |                    | madlan<br>(interquantile range) |                                       |
| Adversed to protocol        |                    |                                 |                                       |
| Control                     | 189                | / (3-30)                        |                                       |
| Operineital                 | 211                | 4 (4-3)                         | _ <b>-</b>                            |
| Did not ailhere to protocol |                    | 10.00                           |                                       |
| Control                     | 25                 | 11 (7-17)                       |                                       |
| Experimental.               | 47                 | 11 (8-19)                       |                                       |
| APACHE II score s10         |                    |                                 |                                       |
| Control                     | 120                | 8 (5-30)                        |                                       |
| Eperimental                 | 132                | 4 (4-3)                         |                                       |
| Health care-associated infe | ction              |                                 |                                       |
| Control                     | 54                 | \$ (3-28)                       |                                       |
| Experimental                | 102                | 4 (4-5)                         |                                       |
| Percutamenus dramage        |                    | 3325                            |                                       |
| Control                     | 86                 | 8 (5-10)                        |                                       |
| Experimental                | 84                 | 4 (4-5)                         | <b>_</b>                              |
| Surgical drainage           |                    |                                 |                                       |
| Control                     | 124                | 8 (5-10)                        | <b>-</b>                              |
| Experimental                | 171                | 4 (4-5)                         |                                       |
| Appendiced source           |                    |                                 |                                       |
| Control                     | 34                 | 8 (5-10)                        | · · · · · · · · · · · · · · · · · · · |
| Experimental                | 39                 | 5 (4-6)                         |                                       |
| Non-appendiceal source .    |                    |                                 |                                       |
| Cortrol                     | 236                | 10-10                           |                                       |
| Experimental                | 218                | 4 (4-5)                         |                                       |

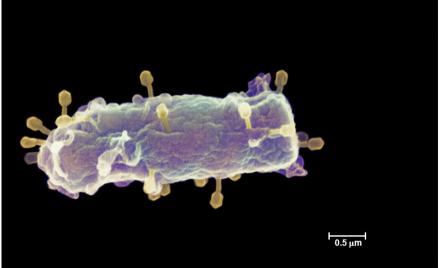
Sawyer RG, et al: NEJM, 2015

## **Potential Weapons of Mass Destruction**



## Alternatives to Antibiotics in Surgery: The Post Antibiotic Era




# Surgical Infection in the Post-Antibiotic Era

- •Bacteriophage Treatment
- Antimicrobial Peptides
- Passive Immune Enhancement
- Immunization of the Host
- Ionic Modulation of Microbial Virulence
- •Manipulation of the Host Microbiome
- Revisiting Topical Antiseptics/Irrigation

# **Bacteriophage**

- Viruses that infect Bacteria
- Commonly identified in feces
- Estimated to be >  $10^{30}$  phage types
- Virus injects phage DNA into the bacterial cell
- Two Effects upon Infected Bacterial Cell
  - Lysis due to viral replication, or
  - Lysogenic effects: phage DNA is incorporated into the bacterial cell genome

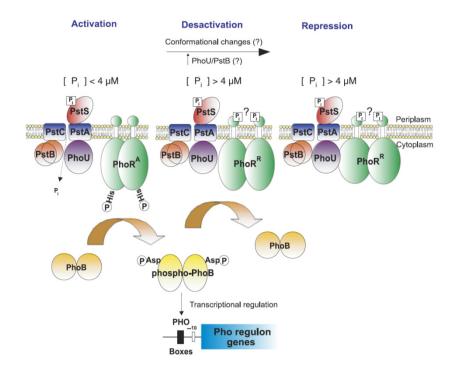
#### T4 bacteriophage infecting an *E. coli* cell



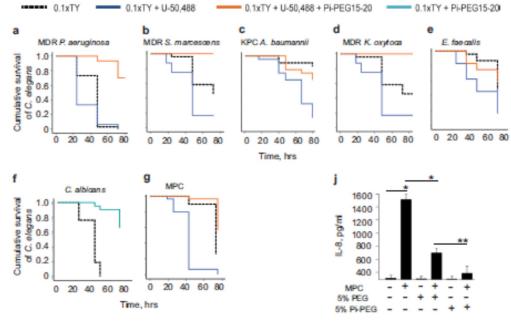
# Bacteriophage Therapy

#### Advantages

- Phage have bacterial specificity; will not affect or promote resistance in the normal microflora.
- Phage do not attach human cells
- We ingest and are exposed to phage constantly with no identified effects.
- Phage multiply at the site of an active infection and are then eliminated when susceptible pathogens are gone.
- New phage are constantly evolving.
- Phage components (lysins) can be developed as targeted antibiotic treatments


#### Disadvantages

- No clinical trials have proven human efficacy
- High degree of specificity is problematic when the pathogen is unknown.
- Resistance can develop to specific phage strains.
- Phage are large particles compared to antibiotics; pharmacokinetics?
- Antibodies to phage may pose an issue with sustained or repeated therapy.
- Can lysogenic phage transduce resistance genes from lysed bacteria to sensitive organisms?


# Ionic Modulation of Bacterial Virulence

#### **Managing the Pathobiome**

- Probiotics: Restore normal bacteria (e.g., gut anaerobes) from exogenous sources
- Selective Gut Decontamination: Oral antibiotics to eliminate all potential pathogens
- Phosphate Replacement:
  - Phosphate is depleted in the stress response
  - Low phosphate is a quorum signal for microbes
  - Low phosphate increases the virulent microbial phenotype



# Ionic Modulation of Bacterial Virulence



#### C. Elegans (nematode)



Zaborin A, et al: Antimicrob Agents Chemother, 2014.

48

# Ionic Modulation of Bacterial Virulence Mechanical Bowel Preparation

|      | Polyethylene Glycol | Sodium Phosphate |
|------|---------------------|------------------|
| N=   | 303                 | 367              |
| SSIs | 103 (34%)           | 87 (24%)         |

P = 0.03 (Univariate analysis)

P = 0.065 (Multi-variate analysis)

Itani KM et al: Am J Surg 2007; 193:190

# Probiotics: A Commercial "Orgy"



# Restoration of the Gut Microbiome: Fecal Transplants





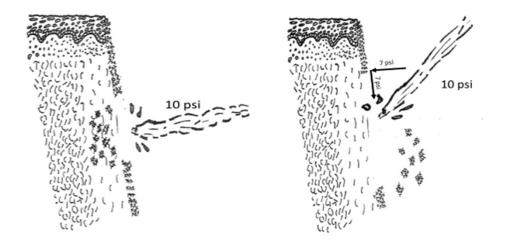


SCIENCE 01/11/2013 08:50 am ET Huffington Post

#### Artificial Poop, RePOOPulate, May Lead To Synthetic Fecal Transplants

By Christie Wilcox




# Pressure Lavage of the Surgical Wound



## Pressure Lavage: Unanswered Questions

- Optimum Pressure
- Addition of Antiseptics to Irritants
- Angle of Irrigation
- Treatment or Preventive applications

The Angle of Irrigation?



Fry DE: Surgical Infections, 2017

# Chlorhexidine:

### A potential open wound application?

#### Table 1

Log reduction of selective gram-positive and gram-negative surgical isolates following timed exposure to 0.05% chlorhexidine gluconate solution\*

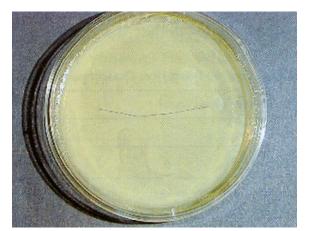
|                                         |                  | Log <sub>10</sub> colony-forming | g units <sup>†</sup> (log reduction) |
|-----------------------------------------|------------------|----------------------------------|--------------------------------------|
| Organism                                | CFU <sup>‡</sup> | 60 Seconds                       | 5 Minutes                            |
| MRSA                                    | 8.7              | 3.4 (>5 logs)                    | 2.6 (>6 logs)                        |
| MSSA                                    | 8.4              | 3.5 (>5 logs)                    | 2.6 (>6 logs)                        |
| Staphylococcus epidermidis <sup>§</sup> | 8.3              | 2.9 (>5 logs)                    | 2.5 (>5 logs)                        |
| Escherichia coli                        | 8.8              | 2.7 (>6 logs)                    | 2.1 (>6 logs)                        |
| Escherichia aerogenes                   | 8.9              | 3.1 (>5 logs)                    | 2.8 (>6 logs)                        |

*CFU*, Colony-forming units; *MRSA*, methicillin-resistant *Staphylococcus aureus*; *MSSA*, methicillin-susceptible *Staphylococcus aureus*.

\*0.05% Chlorhexidine gluconate (IRRISEPT; IrriMax Corp, Lawrenceville, GA).

<sup>†</sup>Postexposure: log<sub>10</sub> CFU/milliliter.

<sup>‡</sup>Baseline: initial log<sub>10</sub> CFU/milliliter.


<sup>§</sup>Biofilm-producing strain from vascular graft infection.

Edmiston CE, et al: Am J Infect Control, 2013

## Antibacterial Suture

Control Polyglactin 910 Suture without Triclosan

Polyglactin 910 Suture **with** Triclosan





### **Triclosan-coated Sutures**

- 34 Clinical Trials in the Analysis
- A Heterogeneous populations of surgical cases and surgical patients
- Triclosan-coated sutures associated with a significant reduction in SSI rates (P<0.001)</li>
- Cost savings per case = 91.25 £

Leaper et al: Br J Surg, 2017

| Reference                          | Study type                           | Odds ratio              |
|------------------------------------|--------------------------------------|-------------------------|
| Ueno et al. <sup>54</sup>          | Spinal surgery                       |                         |
| Rozzelle et al.47                  | Cerebrospinal fluid shunt surgery    |                         |
| Ruiz-Tovar et al.48                | Abdominal surgery                    |                         |
| Yamashita et al.56                 | Colorectal surgery                   |                         |
| Nakamura et al.42                  | Colonic surgery                      |                         |
| Okada ef al.43                     | Abdominal surgery                    |                         |
| Hedde-Parison et al. <sup>50</sup> | Vaginal prolapse                     |                         |
| Rasić et al. <sup>45</sup>         | Colorectal surgery                   |                         |
| Diener et al. <sup>27</sup>        | Upper gastrointestinal tract surgery |                         |
| Zhang et al. <sup>57</sup>         | Breast surgery                       |                         |
| Galal and El-Hindawy <sup>29</sup> | Multiple surgical wound types        |                         |
| Fraccalvieri et al.28              | Colorectal surgery                   |                         |
| Justinger et al.34                 | Abdominal surgery                    | +                       |
| Justinger et al. <sup>36</sup>     | Hepatobiliary surgery                |                         |
| Nakamura et al. <sup>41</sup>      | Colorectal surgery                   |                         |
| Renko et al. <sup>46</sup>         | Multiple surgical wound types        |                         |
| Galal El-Hindawy <sup>29</sup>     | Multiple surgical wound types        |                         |
| Hoshino et al.31                   | Digestive tract surgery              | +                       |
| Galal El-Hindawy <sup>29</sup>     | Multiple surgical wound types        |                         |
| Laas et al.38                      | Breast surgery                       |                         |
| Justinger et al.36                 | Abdominal surgery                    |                         |
| Takeno et al.52                    | Abdominal surgery                    |                         |
| Williams et al.55                  | Breast surgery                       |                         |
| Olmez and Colak <sup>44</sup>      | Abdominal surgery                    | +                       |
| Karip et al.37                     | Pilonidal disease                    |                         |
| sik et al.33                       | Cardiac surgery                      |                         |
| Seim et al. 49                     | Artery bypass grafting               |                         |
| Baracs et al.24                    | Colorectal surgery                   |                         |
| Turtiainen et al.53                | Lower-limb revascularization         |                         |
| Chen et al. <sup>25</sup>          | Head and neck surgery                |                         |
| Stadler and Fleck <sup>50</sup>    | Sternotomy                           |                         |
| Diener et al.27                    | Colorectal surgery                   |                         |
| Steingrimsson et al.51             | Artery bypass grafting               |                         |
| Mattavelli et al.39                | Colorectal surgery                   |                         |
| Mingmalairak et al.40              | Appendicectomy                       |                         |
| Huszár et al. <sup>32</sup>        | Colorectal surgery                   | ÷+                      |
| Diener et al.27                    | Hepatopancreatobiliary surgery       |                         |
| Ford et al.9                       | Multiple swagical wound types        |                         |
| Fixed-effect model                 | 0                                    | •                       |
| Random-effects model               |                                      | • • • • • • • • •       |
|                                    |                                      | 0.01 0.1 1 10 100       |
|                                    |                                      | Favours TCS Favours NCS |

# Other Proposed Methods for Reducing SSIs

- Antimicrobial Wound Barrier Devices
- Chlorhexidine + pressure irrigation devices
- Chlorhexidine/Silver plastic adhesive skin devices
- Implantable drug delivery systems
- Negative Pressure Wound Therapy
- Many Others

# CDC Antibiotic Awareness Week November 13-19, 2017

- Stop needless antibiotic administration
- Use Preventive Antibiotics for only the perioperative period
- Reduce the length of antibiotic administration with active infections; remember, failed antibiotics may mean failed source control!
- De-escalate combination empirical therapy when culture results are available.
- <u>Significant reductions in total antibiotic</u> <u>utilization can reverse resistance trends (e.g.</u> <u>aminoglycosides)</u>

#### Annual Burden of Antibiotic Resistance in the United States





3

Δ

5

6

#### U.S. ANTIBIOTIC AWARENESS WEEK November 18-24, 2019

www.cdc.gov/antibiotic-use

**Antibiotics save lives.** When a patient needs antibiotics, the benefits outweigh the risks of side effects or antibiotic resistance.

Antibiotics aren't always the answer. Everyone can help improve antibiotic prescribing and use.

**Antibiotics do not work on viruses,** such as those that cause colds, flu, bronchitis, or runny noses, even if the mucus is thick, yellow, or green.

Antibiotics are only needed for treating infections caused by bacteria, but even some bacterial infections get better without antibiotics, including many sinus infections and some ear infections.

Antibiotics will not make you feel better if you have a virus. Respiratory viruses usually go away in a week or two without treatment. Ask your healthcare professional about the best way to feel better while your body fights off the virus.

If you need antibiotics, take them exactly as prescribed. Talk with your doctor if you have any questions about your antibiotics, or if you develop any side effects, especially diarrhea, since that could be a *Clostridioides difficile* infection (also called *C. difficile* or *C. diff*), which needs to be treated.

Antibiotics are critical tools for treating life-threatening conditions such as pneumonia and sepsis.

# Antibiotic Stewardship in Surgical Care

- Select the correct drug specific to the patient for prophylaxis
- Discontinue needless post-operative antibiotic administration
  - Inpatient procedures
  - Outpatient/Ambulatory procedures
- Effective Source Control
- Reduce inappropriate/unnecessary antibiotic therapy in established infections
- Cover all likely pathogens with empirical antibiotic choices
- Engage in de-escalation when culture results are available
- Consider alternatives to Antibiotics as future data for prevention and treatment evolve.